
XXXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2013, 1-4 DE SETEMBRO DE 2013, FORTALEZA, CE

Ascending chains of monoid and encoding
Antonio Aparecido de Andrade and Tariq Shah

Abstract— Let B be any fixed finite commutative ring with
identity and k ≥ 0 is an integer. For any prime p there are
the ascending chains B[X; Z0] ⊂ B[X; 1

p
Z0] ⊂ B[X; 1

2p
Z0] ⊂

· · · ⊂ B[X; 1
kp

Z0] ⊂ · · · of commutative monoid rings, where
Z0 ⊂ 1

p
Z0 ⊂ 1

2p
Z0 ⊂ · · · ⊂ 1

kp
Z0 ⊂ · · · are the ascending chains

of cyclic monoids. We established the construction technique
of cyclic codes through the monoid ring B[X; 1

kp
Z0] instead

of a polynomial ring. Moreover we independently considered
BCH, alternant, Goppa, Srivastava codes through a monoid ring
B[X; 1

kp
Z0], where we improved several results of [1] in more

broader sense.

Keywords— Monoid ring, cyclic code, BCH code, alternant
code, Goppa code, Srivastava code.

I. INTRODUCTION

The finite commutative rings are of most interest in com-
mutative algebra due to their applications. An ideal in a
commutative ring plays an essential role for its application
and it is often important to know when an ideal in a ring is
singly generated or principal. A useful class of rings in this
perspective is the polynomial rings in one indeterminate with
coefficients from a finite field, that is, Euclidean domains and
hence a principal ideal domains. The coding for error control
has vital role in high speed digital computers and in the design
of modern communication systems. Most of the classical
error-correcting codes are ideals in finite commutative rings,
especially in factor rings of Euclidean domains of polynomials
and group rings, that is cyclic codes are principal ideals in the
quotient ring Fq[X]/(Xn− 1), where Fq is finite Galois field
and (Xn− 1) is non prime ideal generated by the polynomial
Xn − 1 in Fq[X].

Cazaran and Kelarev [2] have given necessary and sufficient
conditions for an ideal to be the principal; further they
described all finite factor rings Zm[X1, · · · , Xn]/I , where
I is an ideal generated by an univariate polynomial, which
are commutative principal ideal rings. But in [3], Cazaran
and Kelarev characterize the certain finite commutative rings
as a principal ideal rings. Though, the extension of a BCH
code C embedded in a semigroup ring F[S], where S is
a finite semigroup, was considered in 2006 by Cazaran et
al. [4], where an algorithm was given for computing the
weights of extensions for these codes embedded in semigroup
rings as ideals. Kelarev [5] provides the information relating
various ring constructions and about polynomial codes, where
in Sections 9.1 and 9.2 which are very closely related to
semigroup rings, devoted for error-correcting codes in ring
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constructions. Section 9.1 is dealing error-correcting cyclic
codes of length n which are ideals in group ring F[G] with
F a field and G a finite torsion group of order n. Another
work concerning extensions of BCH codes in various ring
constructions has been given by Kelarev in [6] and [7], where
the results can also be considered as the special cases of
particular type of semigroup rings.

A. A. Andrade and R. Palazzo Jr. [1] discussed the cyclic,
BCH, alternant, Goppa and Srivastava codes through the poly-
nomial ring B[X; Z0], where B is any finite commutative ring
with identity. In this study, we introduce the construction tech-
niques of these codes through monoid ring B[X; 1

kpZ0], where
p is any prime integer and k ≥ 1, instead of a polynomial ring
B[X; Z0] as considered in [1]. In fact corresponding to the
family Z0 ⊂ 1

pZ0 ⊂ · · · ⊂ 1
(k−1)pZ0 ⊂ 1

kpZ0 ⊂ · · ·, where p
is any prime integer and k ≥ 1, of ascending chains of cyclic
monoids there is a family of ascending chains B[X; Z0] ⊂
B[X; 1

pZ0] ⊂ · · · ⊂ B[X; 1
(k−1)pZ0] ⊂ B[X; 1

kpZ0] ⊂ · · · of
commutative monoid rings.

The procedure used in this study for constructing linear
codes through the monoid ring B[X; 1

kpZ0] is simple like
polynomial’s set up and technique adopted here is quite
different to the embedding of linear polynomial codes in
a semigroup ring or in a group algebra, which has been
considered by many authors.

II. PRELIMINARIES

Let (B,+, ·) be an associative (commutative) ring and (S, ∗)
is a semigroup. The set SB of all finitely nonzero functions a
from S into B forms a ring with respect to binary operations
addition and multiplication defined as (a + b)(s) = a(s) +
b(s) and (ab)(s) =

∑
t∗u=s

a(t)b(u), whereas the symbol
∑

t∗u=s
shows the sum, taken over all pairs (t, u) of elements of S
with t ∗ u = s and it is understood that if s is not expressible
in the form t ∗ u for any t, u ∈ S, then (ab)(s) = 0. The
set SB is known as semigroup ring of S over B. If S is a
monoid, then SB is called monoid ring. The semigroup ring
SB is represented as B[S] whenever S is a multiplicative
semigroup and its elements are written either as

∑
s∈S

a(s)s or

as
n∑

i=1

a(si)si. The SB has representation B[X;S] whenever

S is an additive semigroup. Since there is an isomorphism
between additive semigroup S and multiplicative semigroup
{Xs : s ∈ S}, it follows that a nonzero element f of B[X;S]

is uniquely represented in the canonical form
n∑

i=1

a(si)Xsi =
n∑

i=1

aiX
si , where ai 6= 0 and si 6= sj for i 6= j [8].

The order and degree of an element of a semigroup ring are
not generally defined but if S is a totally ordered semigroup,
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the degree and the order of an element of B[X;S] is defined in

the following manner: if a =
n∑

i=1

aiX
si is the canonical form

of the nonzero element a ∈ B[X;S], where s1 < s2 < · · · <
sn, then sn is the degree of a and written as deg(a) = sn and
similarly the order of a is written as ord(a) = s1. Now, if R
is an integral domain, then for f, g ∈ B[X;S], it follows that
deg(ab) = deg(a) + deg(b) and ord(ab) = ord(a) + ord(b).

If S is Z0, the additive monoid of non negative integers
and B is an associative commutative ring, the semigroup ring
is simply the polynomial ring B[X]. It can be observed that
B[X] = B[X; Z0] ⊂ B[X; 1

kpZ0]. Furthermore, as 1
kpZ0 is

an ordered monoid, it follows that we can define the degree
of elements in B[X; 1

kpZ0].
In this study initially we replaced the construction technique

of cyclic codes by a monoid ring B[X; 1
kpZ0], where p is

any prime integer and k ≥ 0, instead of a polynomial ring.
After it we independently considered BCH, alternant, Goppa,
Srivastava codes and by this new way of construction with
utilizing the same lines as adopted in [1], where almost all the
results stand as a particular case of findings of this paper. That
is, in this work we take B as a finite commutative ring with
unity and in the same spirit of [1], we fixed a cyclic subgroup
of group of units of the factor ring B[X; 1

kpZ0]/((X
1

kp )kpn−
1). The factorization of Xkpn − 1 over the group of units
of B[X; 1

kpZ0]/((X
1

kp )kpn − 1) is again the central issue as
[1]. Under consideration processes of constructing linear codes
through the monoid ring B[X; 1

kpZ0] is very similar to linear
codes over a finite ring.

III. ASCENDING CHAINS AND CYCLIC CODES

If the ideal I =< a > is principal ideal of a unitary
commutative ring R, then in any factor ring R of R, the
corresponding ideal I =< a >, where a is the residue class of
a [9]. Hence, every factor ring of a principal ideal ring (PIR)
is a PIR as well. Consequently the ring Fq [X;Z0]

(Xn−1) , where q is
a power of a prime, is a PIR as Fq[X; Z0] is an Euclidean
domain [10, Theorem 8.4]. Similarly, < = Zq [X;Z0]

(Xn−1) is a PIR
[1].

Let B be a commutative ring with identity. For any prime
integer p and k ≥ 0, we get the following family of strict
ascending chains of commutative monoid rings.

B[X; Z0] ⊂ B[X;
1
p

Z0] ⊂ B[X;
1
2p

Z0] ⊂ B[X;
1
3p

Z0] ⊂ · · ·

However, as a consequence we obtain the corresponding
canonical epimorphism

B[X; Z0] ⊂ B[X; 1
pZ0] ⊂ B[X; 1

2pZ0] ⊂ · · ·
↓ ↓ ↓

B[X;Z0]
(Xn−1)

B[X; 1p Z0]

((X
1
p )pn−1)

B[X; 1
2p Z0]

((X
1
2p )2pn−1)

· · · ⊂ B[X; 1
kpZ0] ⊂ · · ·
↓

B[X; 1
kp Z0]

((X
1

kp )kpn−1)
· · ·

By the same argument of [1], it follows that the factor
ring of Euclidean monoid domain

Fq [X; 1
kp Z0]

((X
1

kp )kpn−1)
, where q is a

power of a prime and p is any fixed prime integer and k ≥ 0,
is a PIR and

Zq [X; 1
kp Z0]

((X
1

kp )kpn−1)
is a PIR. The homomorphic image

of a PIR is again a PIR by [11, Proposition (38.4)]. By the
same spirit of [1], if B is a commutative ring with identity,
then < =

B[X; 1
kp Z0]

((X
1

kp )kpn−1)
, where p is any prime integer and

k ≥ 0, is a finite ring by [8, Theorem 7.2].
Definition 1: A linear code C of length kpn over B is a

B-submodule of the B-module of all kpn-tuples of Bkpn,
and a linear code C over B is cyclic, if whenever v =
(v0, v 1

kp
, v 2

kp
, · · · , v1, · · · , v kpn−1

kp
) ∈ C, every cyclic shift

v(1) = (v kpn−1
kp

, v0, v 1
kp

, · · · , v kpn−2
kp

) ∈ C, with vi ∈ B for

0 ≤ i ≤ kpn−1
kp .

Let f(X
1

kp ) ∈ B[X; 1
kpZ0] be a monic generalized poly-

nomial of degree n, then
B[X; 1

kp Z0]

(f(X
1

kp ))
is the set of residue

classes of generalized polynomials in B[X; 1
kpZ0] modulo the

ideal (f(X
1

kp )) and a class can be represented as a(X
1

kp ) =
a0+a 1

kp
X

1
kp +· · ·+a kpn−1

kp
X

kpn−1
kp . A principal ideal consists

of all multiples of a fixed generalized polynomial g(X
1

kp )
by elements of

B[X; 1
kp Z0]

(f(X
1

kp ))
, known as generator generalized

polynomial of the ideal. Now, we shall prove some results
which show a method of obtaining the generator generalized
polynomial of a principal ideal. This method shall provide a
foundation in constructing a principal ideal in

B[X; 1
kp Z0]

(f(X
1

kp ))
. Now,

onward < shall represent the factor ring
B[X; 1

kp Z0]

(f(X
1

kp ))
, whereas

< = B[X]
(f(X)) of [1].

Theorem 1: A subset C of < is a cyclic code if and only
if C is an ideal of <.

Proof: Assume C is an ideal in <kp, and hence a B-
module. It is also closed under multiplication by any ring
element, in particular under multiplication by X

1
pk . Hence

C is a cyclic code. Conversely, let the subset C is a cyclic
code. Then C is closed under addition and multiplication by
X

1
pk . But then it is closed under multiplication by powers of

X
1

kp and linear combinations of powers of X
1

pk . This means,
C is closed under multiplication by an arbitrary generalized
polynomial. Hence, C is an ideal.

Lemma 1: Let I be an ideal in the ring <. If the leading
coefficient of some generalized polynomial of lowest degree in
I is a unit in B, then there exists a unique monic generalized
polynomial of minimal degree in I .

Proof: Let f(X
1

kp ) ∈ I with lowest degree r in I .
If the leading coefficient ar of f(X

1
kp ) is a unit in B, it

is always possible to get a monic generalized polynomial
f1(X

1
kp ) = arf(X

1
kp ) with the same degree in I . Now, if

both g(X
1

kp ) and f(X
1

kp ) are monic generalized polynomials
of minimal degree r in I , then the generalized polynomial
k(X

1
kp ) = f(X

1
kp ) − g(X

1
kp ) is in I and has degree fewer

than r. Therefore, by the choice of f(X
1

kp ) follows that
k(X

1
kp ) = 0, and hence f(X

1
kp ) = g(X

1
kp ).
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Theorem 2: Let I be an ideal in the ring <. If the leading
coefficient of some generalized polynomial g(X

1
kp ) of lowest

degree in ideal I is a unit in B, then I is generated by g(X
1

kp ).
Proof: Let a(X

1
kp ) be a generalized polynomial in I . By

Euclidean algorithm there are unique generalized polynomials
q(X

1
kp ) and r(X

1
kp ) with a(X

1
kp ) = q(X

1
kp )g(X

1
kp ) +

r(X
1

kp ), where r(X
1

kp ) = 0 or deg(r(X
1

kp )) <

deg(g(X
1

kp )). So clearly r(X
1

kp ) ∈ I . Hence, by the choice of
g(X

1
kp ), it follows that r(X

1
kp ) = 0 and therefore, a(X

1
kp ) =

q(X
1

kp )g(X
1

kp ). Thus I is generated by g(X
1

kp ).
Lemma 2: Let r(X

1
kp ) be a generalized polynomial in

B[X; 1
kpZ0]. If deg(r(X

1
kp )) < deg f(X

1
kp )) and r(X

1
kp ) 6=

0, then r(X
1

kp ) is nonzero in <.
Proof: If r(X

1
kp ) = 0, then there is q(X

1
kp ) 6=

0 in B[X; 1
kpZ0] such that r(X

1
kp ) = f(X

1
kp )q(X

1
kp ).

Since f(X
1

kp ) is regular and r(X
1

kp ) 6= 0 it follows
that deg(r(X

1
kp )) = deg(f(X

1
kp )) + deg(q(X

1
kp )) ≥

deg(f(X
1

kp )), which is a contradiction. Hence r(X
1

kp ) 6= 0.

Lemma 3: Let I be an ideal in the ring < and g(X
1

kp ) ∈
B[X; 1

kpZ0] with leading coefficient unit in B such that

deg(g(X
1

kp )) < deg(f(X
1

kp )). If g(X
1

kp ) ∈ I and has lowest
degree in I , then g(X

1
kp ) divides f(X

1
kp ) in B[X; 1

kpZ0].
Proof: According to Euclidean algorithm for com-

mutative rings there are unique polynomials q(X
1

kp ) and
r(X

1
kp ) such that 0 = g(X

1
kp )q(X

1
kp ) + r(X

1
kp ), where

r(X
1

kp ) = 0 or deg(r(X
1

kp )) < deg(g(X
1

kp )). Thus
r(X

1
kp ) = −g(X

1
kp )q(X

1
kp ), i.e., r(X

1
kp ) is in I . So, it

follows by the choice of g(X
1

kp ) that r(X
1

kp ) = 0. Also, by
Euclidean algorithm for commutative rings, there are unique
generalized polynomials q1(X

1
kp ) and r1(X

1
kp ) such that

f(X
1

kp ) = g(X
1

kp )q1(X
1

kp ) + r1(X
1

kp ), where r1(X
1

kp ) = 0
or deg(r1(X

1
kp )) < deg(g(X

1
kp )). So 0 = g(X

1
kp )q1(X

1
kp )+

r1(X
1

kp ) = g(X
1

kp )q(X
1

kp ) + r(X
1

kp ). Thus q1(X
1

kp ) =
q(X

1
kp ) and r1(X

1
kp ) = r(X

1
kp ) = 0. By Lemma 2 it follows

that r1(X
1

kp ) = 0 and therefore g(X
1

kp ) divides f(X
1

kp ).
Theorem 3: Let I be an ideal in the ring <. If g(X

1
kp )

divides f(X
1

kp ) and g(X
1

kp ) ∈ I , then g(X
1

kp ) has lowest
degree in (g(X

1
kp )).

Proof: Suppose that there is b(X
1

kp ) in (g(X
1

kp ))
such that deg(b(X

1
kp )) < deg(g(X

1
kp )). Since b(X

1
kp ) ∈

(g(X
1

kp )), it follows that b(X
1

kp ) = g(X
1

kp )h(X
1

kp ) for
some h(X

1
kp ) ∈ R. Thus b(X

1
kp ) − g(X

1
kp )h(X

1
kp ) ∈

(f(X
1

kp )), i.e., b(X
1

kp )− g(X
1

kp )h(X
1

kp ) = f(X
1

kp )a(X
1

kp )
for some a(X

1
kp ) in B[X; 1

kpZ0]. This gives b(X
1

kp ) =
g(X

1
kp )h(X

1
kp ) + f(X

1
kp )a(X

1
kp ). Since g(X

1
kp ) divides

f(X
1

kp ), it follows that g(X
1

kp ) divides g(X
1

kp )h(X
1

kp ) +
f(X

1
kp )a(X

1
kp ), which implies that g(X

1
kp ) divides b(X

1
kp ),

a contradiction. Hence g(X
1

kp ) has lowest degree in
(g(X

1
kp )).

IV. BCH AND ALTERNANT CODES

In this section, we construct BCH and alternant codes
through a monoid ring instead of a polynomial ring. First

we noticed the fundamental properties of Galois extension
rings, which are used in the construction of these codes. Also,
we assume that (B,M) is a finite unitary local commutative
ring and residue field K = B

M
∼= GF (qm), where q is a

prime integer, m a positive integer. The natural projection
π : B[X; 1

kpZ0] → K[X; 1
kpZ0] is defined by π(a(X

1
kp )) =

a(X
1

kp ), i.e., π(
∑kpn

i=0 aiX
1

kp i) =
∑kpn

i=0 aiX
1

kp i, where ai =
ai+M for i = 0, · · · , kpn. Let f(X

1
kp ) be a monic generalized

polynomial of degree t in B[X; 1
kpZ0] such that π(f(X

1
kp ))

is irreducible in K[X; 1
kpZ0]. Since [8, Theorem 7.2] ac-

commodates B[X; 1
kpZ0] as B[X], it follows that f(X

1
kp )

is also irreducible in B[X; 1
kpZ0], by [12, Theorem XIII.7].

The ring < is a finite commutative local factor ring of a
monoid ring whose maximal ideal is M2 = M1

(f(X
1

kp ))
, where

M1 = (M,f(X
1

kp )) and the residue field K1 = <
M2

'
B[X; 1

kp Z0]

(M,f(X
1

kp ))
' K[X; 1

kp Z0]

(π(f(X
1

kp )))
' GF (qkpmt), and K∗

1 is the

multiplicative group of K1 whose order is s = qkpmt − 1.
Let U(<) denotes the multiplicative group of units of <. It

follows that U(<) is an abelian group, and therefore it can
be expressed as a direct product of cyclic groups. We are
interested in the maximal cyclic subgroup of U(<), hereafter
denoted by Gs, whose elements are the roots of Xs − 1 for
some positive integer s such that gcd(q, s) = 1. There is only
one maximal cyclic subgroup of U(<) having order s [12,
Theorem XVIII.2].

Before going ahead it must be noticed that the length n of
cyclic codes (ideals in <) under consideration is depends upon
qkpmt− 1. Though for <, the length n of cyclic codes (ideals
in <) is depends upon qmt − 1, the case of [1, Definition
3.1]. Thus the integer kp have a crucial role in the length of
cyclic codes. Furthermore, deg(h(X

1
kp )) ≥ deg(h(X)) and

deg(g(X
1

kp )) ≥ deg(g(X)), where k = 0, 1, 2, · · ·.
It would be worth mentioning that McCoy rank of parity-

check matrix over the ring < is an integer r [12]. Now onward
it is clear that McCoy rank of parity-check matrix over the ring
< will be kpr.

Definition 2: A shortened BCH code C(n, η) over B of
length n ≤ s has parity-check matrix

H =


α1 α2 · · · αn

α2
1 α2

2 · · · α2
n

...
...

. . .
...

αkpr
1 αkpr

2 · · · αkpr
n

 (1)

for some r ≥ 1, where η = (α1, α2, · · · , αn) is the locator vec-
tor, consisting of distinct elements of Gs. The code C(n, η),
with n = s, will be known as a BCH code.

Lemma 4: If α is an element of Gs of order s, then the
differences αl1 − αl2 are units in < for 0 ≤ l1 6= l2 ≤ s− 1.

Proof: The element αl1 − αl2 has the representation
αl1(1− αl2−l1), where 1 is the identity of <. The factor αl1

in the product is a unit. The second factor can be written as
1 − αk for some integer k in the interval [1, s − 1]. Now, if
the elements 1 − αk, for 1 ≤ k ≤ s − 1, were not the units
in <, then 1− αk ∈ M2, and consequently π(α)k = π(1) for
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k < s, which a contradiction. Hence 1−αk ∈ < are units for
1 ≤ k ≤ s− 1.

Theorem 4: The minimum Hamming distance of a BCH
code C(n, η) satisfies d ≥ kpr + 1.

Proof: Let c be a nonzero codeword in C(n, η) with
wH(c) ≤ kpr. Then cHT = 0. Deleting n − kpr columns
of the matrix H corresponding to zeros of the codeword, it
follows that the new matrix is Vandermonde. It follows, by
Lemma 4, that the determinant is a unit in <. Thus, the only
possibility for c is the all zero codeword.

Definition 3: A shortened alternant code C(n, η, ω) of
length n ≤ s is a code over B that has parity-check matrix

H =


ω1 ω2 · · · ωn

ω1α1 ω2α2 · · · ωnαn

ω1α
2
1 ω2α

2
2 · · · ωnα2

n
...

...
. . .

...
ω1α

kpr−1
1 ω2α

kpr−1
2 · · · ωnαkpr−1

n



=


1 · · · 1
α1 · · · αn

...
. . .

...
αkpr−1

1 · · · αkpr−1
n


 w1 · · · 0

...
. . .

...
0 · · · wn

 = LD,

(2)
where r is a positive integer, η = (α1, α2, · · · , αn) is the
locator vector, consisting of distinct elements of Gs, and ω =
(ω1, ω2, · · · , ωn) is an arbitrary vector consisting of elements
of Gs.

Theorem 5: The alternant code C(n, η, ω) has minimum
Hamming distance d ≥ kpr + 1.

Proof: Suppose c is a nonzero codeword in C(n, η, ω)
such that the weight wH(c) ≤ kpr. Then cHT = c(LD)T =
0. Setting b = cDT , it follows that wH(b) = wH(c) because
D is diagonal and invertible. Thus, bLT = 0. We obtain the
new matrix H1, the Vandermonde by deleting n−kpr columns
of the matrix H1 that correspond to zeros of the codeword.
It follows, by Lemma 4, that the determinant is a unit in <.
Thus the only possibility for c is all zero codeword.

V. GOPPA AND SRIVASTAVA CODES

Let B, < and Gs as defined in previous section. Let α
1

pk

be a generator element of the cyclic group Gs, where s =
qkpmt − 1. Let h(X) = h0 + h1X + h2X

2 + · · ·+ hpkrX
kpr

be a polynomial with coefficients in < and hkpr 6= 0. Let
T = {α1, α2, · · · , αn} be a subset of distinct elements of Gs

such that h(αi) are units from <, for i = 1, 2, · · · , n.
Definition 4: A shortened Goppa code C(T, h) of length

n ≤ s is a code over B which has parity-check matrix

H =


h(α1)−1 · · · h(αn)−1

α1h(α1)−1 · · · αkpnh(αn)
...

. . .
...

αkpr−1
1 h(α1)−1 · · · αkpr−1

n h(αn)

 , (3)

where r is a positive integer, η = (α1, α2, · · · , αn) is the
locator vector, consisting of distinct elements of Gs, and ω =
(h(α1)−1, · · · , h(αn)−1) is a vector consisting of elements of
Gs.

Definition 5: Let C(T, h) be a Goppa code.
1) If h(X) is irreducible, then C(T, h) is called an irre-

ducible Goppa code.
2) If c = (c1, c2, · · · , cn) ∈ C(T, h) and c =

(cn, · · · , c2, c1) ∈ C(T, h), then C(T, h) is called a
reversible Goppa code.

3) If h(X) = (X − α)kpr−1, then C(T, h) is called a
cumulative Goppa code.

4) If h(X) has no multiple zeros, then C(T, h) is called a
separable Goppa code.

Remark 1: Let C(T, h) be a Goppa code.
1) C(T, h) is a linear code.
2) For a code with Goppa polynomial hl(X) = (X −

βl)kprl , where βl ∈ Gs, it follows that

Hl =


1

(α1−βl)
kprl

1
(α2−βl)

kprl
· · · 1

(αn−βl)
kprl

α1
(α1−βl)

kprl

α2
(α2−βl)

kprl
· · · αn

(α
pkn

−βl)
kprl

...
... · · ·

...
α

kprl−1
1

(α1−βl)
kprl

α
kprl−1
2

(α2−βl)
kprl

· · · α
kprl−1
n

(αn−βl)
kprl


which is row equivalent to

(α1 − βl)−kprl · · · (αn − βl)−kprl

(α1 − βl)−(kprl−1) · · · (αn − βl)
−(kprl−1)

... · · ·
...

(α1 − βl)−1 · · · (αn − βl)−1

 .

As a consequence if h(X) = (X − βl)kprl =∏kpr
l=1 hl(X), then the Goppa code is the intersection

of the codes with hl(X) = (X − βl)kprl , for l =
1, 2, · · · , kpr, and hence it has the parity-check matrix

H =


H1

H2

...
Hkpr

 .

3) A BCH code is a special case of a Goppa code. For
this, choose h(X) = Xkpr and T = {α1, α2, · · · , αn},
where αi ∈ Gs, for all i = 1, 2, · · · , n. By Equation (3),
it follows that

H =


α−kpr

1 α−kpr
2 · · · α−kpr

n

α1−kpr α1−kpr
2 · · · α1−kpr

n
...

... · · ·
...

α−1
1 α−1

2 · · · α−1
n


and it becomes the parity-check matrix of a BCH code,
by Equation (1), when α−1

i is replaced by βi, for i =
1, 2, · · · , n.

Theorem 6: The Goppa code C(T, h) has minimum Ham-
ming distance d ≥ kpr + 1.

Proof: Since C(T, h) is an alternant code C(n, η, ω)
with η = (α1, α2, · · · , αn) and ω = (h(α1)−1, · · · , h(αn)−1),
it follows by Theorem 5 that C(T, h) has minimum distance
d ≥ kpr + 1.

This study is dealing with only encoding but one may
see [13] and [14] for the Goppa codes obtained through
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generalized polynomials of B[X; 1
kpZ0] whenever p = 2 and

k = 1 for its decoding principle.
Srivastava code is an interesting subclass of the alternant

code, which is similar to unpublished work [15], which is
proposed by J. N. Srivastava in 1967, a class of linear codes
which are not cyclic that are defined in form of the parity-
check matrices

H = {
αl

j

1− αiβj
, for 1 ≤ i ≤ r, 1 ≤ j ≤ n},

where α1, α2, · · · , αr are distinct elements of GF (qm) and
β1, β2, · · · , βn are all the elements in GF (qm), except
0, α−1

1 , α−1
2 , · · · , α−1

r and l ≥ 0. In the following, we define
the Srivastava code over a monoid ring instead of a polynomial
ring, which is in fact generalizes [1, Defination 4.1].

Definition 6: A shortened Srivastava code of length n ≤ s
is a code over B that has parity-check matrix

H =


αl

1
α1−β1

αl
2

α2−β1
· · · αl

n

αn−β1
αl

1
α1−β2

αl
2

α2−β2
· · · αl

n

αn−β2
...

...
. . .

...
αl

1
α1−βkpr

αl
2

α2−βkpr
· · · αn

n

αn−βkpr

 ,

where l, r are positive integers and {αi}1≤i≤n, {βi}1≤i≤kpr

are n + kpr distinct elements in Gs.
Theorem 7: A Srivastava code has minimum Hamming

distance d ≥ kpr + 1.
Proof: A Srivastava code has minimum Hamming dis-

tance at least kpr + 1 if and only if every combination of
kpr or fewer columns of H is linearly independent over <,
or equivalently the following submatrix

H1 =



αl
i1

αi1−β1

αl
i2

αi2−β1
· · ·

αl
ikpr

αikpr
−β1

αl
i1

αi1−β2

αl
i2

αi2−β2
· · ·

αl
ikpr

αikpr
−β2

...
... · · ·

...
αl

i1
αi1−βkpr

αl
i2

αi2−βkpr
· · ·

αl
ikpr

αikpr
−βkpr


is nonsingular. However det(H1) =
(αi1αi2 · · ·αikpr

)ldet(H2), where the matrix H2 is given by

H2 =


1

αi1−β1

1
αi2−β1

· · · 1
αikpr

−β1
1

αi1−β2

1
αi2−β2

· · · 1
αikpr

−β2

...
...

. . .
...

1
αi1−βpr

1
αi2−βkpr

· · · 1
αikpr

−βkpr

 .

As det(H2) is a Cauchy determinant of order kpr, so it can
be concluded that det(H1) = (αi1 · · ·αikpr

)lθ, where θ =

(−1)

(
kpr
2

)

φ(αi1 ,···,αikpr)φ(β1,β2,···,βkpr)

v(αi1 )v(αi2 )···v(αikpr
) , φ(αi1 , · · · , αikpr

) =∏
ij>ih

(αij
− αih

) and v(X) = (X − β1)(X − β2) · · · (X −
βkpr). So by Lemma 4 it follows that det(H1) is a unit in <
and therefore d ≥ kpr + 1.

Definition 7: Let r = (kpr)l and α1, · · · , αn,
β1, β2, · · · , βkpr be the n + kpr distinct elements of

Gs. Let ω1, · · · , ωn be the elements of Gs. A generalized
Srivastava code of length n ≤ s is a code over B that has
parity-check matrix given by

H =


H1

H2

...
Hkpr

 , (4)

where

Hj =


ω1

α1−βj

ω2
α2−βj

· · · ωn

αn−βj
ω1

(α1−βj)
2

ω2

(α2−βj)2 · · · ωn

(αn−βj)
2

...
...

. . .
...

ω1
(α1−βj)

l
ω2

(α2−βj)
l · · · ωn

(αn−βj)
l


for j = 1, 2, · · · , kpr.

Theorem 8: A Srivastava code has minimum Hamming
distance d ≥ (kpr)l + 1.

Proof: Follows by Remark 1 and Theorem 7, because the
matrices of the Equations (3) and (4) are equivalents, whereas
g(X) = (X − βi)l.

REFERENCES

[1] A. A. Andrade, R. Palazzo Jr., Linear codes over finite rings, Tend. Mat.
Apl. Comput., 6(2), (2005), 207-217.

[2] J. Cazaran, A.V. Kelarev, Generators and weights of polynomial codes,
Archiv. Math., 69, (1997), 479-486.

[3] J. Cazaran, A.V. Kelarev, On finite principal ideal rings, Acta Math.
Univ. Comenianae, 68(1), (1999), 77-84.

[4] J. Cazaran, A.V. Kelarev, S.J. Quinn, D. Vertigan, An algorithm for
computing the minimum distances of extensions of BCH codes embedded
in semigroup rings, Simgroup Forum, 73, (2006), 317-329.

[5] A.V. Kelarev, Ring constructions and applications, World Scientific,
River Edge, New York (2002).

[6] A.V. Kelarev, An algorithm for BCH codes extended with finite state
automata, Fundamenta Informaticae, 84(1), (2008), 51-60.

[7] A.V. Kelarev, Algorithms for computing parameters of graph-based
extensions of BCH codes, Journal of Discrete Algorithms, 5, (2007),
553-563.

[8] R. Gilmer, Commutative semigroup rings, University Chicago Press
Chicago and London (1984).

[9] N. Bourbaki, Anneax principaux, § 7.1 in Eléments de Mathématiques,
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