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Fan-Chirp Transform with a Timbre-Independent
Salience Applied to Polyphonic Music Analysis

Isabela F. Apolindrio and Luiz W. P. Biscainho

Abstract— This article presents the analysis of polyphonic
music signals using the Fan Chirp Transform (FChT). Its main in-
novation consists in using a timbre-independent salience function,
instead of the classical approach where a partial accumulation
is computed. A set of simulations allows one to conclude that
the proposed approach yields better results for noise-corrupted
signals besides lower computational complexity.
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I. INTRODUCTION

A recurrent task in the context of music information retrieval
is to track predominant fundamental frequencies correspond-
ing to the existing main melodies. This procedure is essential
in many applications, such as automatic music transcription [1]
and sound source separation [2]. A usual strategy to aid in
this task is to compute a “salience function” that indicates the
relevance of each spectral component in the signal.

The classical approach to compute the salience of a given
frequency fy consists in accumulating the signal spectrum
energy at integer multiple of fj [3]:

1 &
plfo) = - ;long (ifo)l. (1)
where X (f) is the spectrum of a discrete signal xz(n) and
ny a pre-determined number of harmonic partials. Since
Equation (1) uses information of the spectrum magnitude, this
salience function is dependent of sound source timbres.

Another approach to compute a salience function was
presented in [4]. This method, here named as DLMP (after
the authors’ initials), uses information of frequency location
to determine the most prominent existing pitches. The peaks of
the spectrum are estimated, and a salience value is assigned to
each detected peak. Such values reflect a “probability” of the
considered peak being an existing fundamental frequency. For
this purpose, a theoretical sequence of deviations is defined,
based on the distance between the observed peak frequencies
and the notes in a 12-note equal tempered scale [4].

Some modifications to the original DLMP method were
proposed in [5], among which the most important are the
following: a pre-processing step of spectrum noise floor re-
moval was added in order to account for higher partials in
the peak detection stage; the correlation coefficient is used
as a measure of similarity between theoretical and observed
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sequences, instead of their inner product; and a post-processing
stage to remove ambiguity created by partials of existing
fundamental frequencies was included.

As previously said, the salience function informs the rele-
vance of the existing pitches in a given discrete-time signal.
However, the main interest here is to study the evolution in
time of multiple fundamental frequencies of an audio signal.
To that purpose, the signal under analysis is considered to
be piecewise stationary and the spectral content of each time
frame is evaluated by means of the Discrete Fourier Transform
(DFT). This operation is known in the literature as the Short-
Time Fourier Transform (STFT) [6].

The Fan Chirp Transform (FChT), first introduced in [7],
models each fundamental frequency in a signal, along with
its superior harmonic partials, as a linear function in time.
In [8], the FChT was applied to music signals by means of
the Short-Time Fan Chirp Transform (STFChT). This way, a
fundamental frequency in a given music signal is considered to
vary linearly in time for short time frames. This change allows
sparser representations', and thereby possibly better precision
when estimating the existing fundamental frequencies.

The main goal of this work is to study the performance
attained by different strategies for computing the existing fun-
damental frequencies in polyphonic signals: A) combining the
STFT with both presented salience functions; and B) replacing
the STFT by the STFChT as the chosen time-frequency
transform. To that purpose, two measures of efficiency are
adopted: the mean squared error between the annotated correct
fundamental frequency and the estimated one, and a hit rate
within a +3% error tolerance. The same analysis is carried
out when adding white noise to the signal in order to assess
the methods’ robustness.

This paper is organized as follows. Section II briefly ex-
plains the timbre-independent salience function, along with
the proposed modifications. Section III introduces the FChT
and explains its original implementation as defined in [8].
Section IV presents the performed experiments and respective
results. Lastly, Section V draws some conclusions.

II. TIMBRE-INDEPENDENT SALIENCE FUNCTION

This section briefly explains the timbre-independent salience
function considered in this work [4], [5].

Figure 1 shows the block diagram of the DLMP salience
computation method [4]. The input signal xz(n) is assumed
to be a discrete L-sample long audio signal, ie., n =

"Here, sparsity accounts for concentration around regions of the time-
frequency plane corresponding to emitted tonal sounds.
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0,1,...,L — 1. The first step computes a time-frequency
transform of x(n), X(k,j), where ¥ = 0,1,..., K — 1
and ;7 = 0,1,...,J — 1 are time and frequency indexes,
respectively. The analysis window has N samples, and the
hop size is 7. Two different time-frequency transforms, the
STFT and the STFChT, will be considered in this work.

X(k, j) Time-Frequency

e 2(n)
Transformation

Spectral Peak | P(k,p) Salience
. . ——=S8(k,p)
Detection Computation
fref
Reference
Frequency
Estimation

Fig. 1.
method.

Block diagram of the timbre-independent salience computation

The next step is the spectral peak detection. First, for
each time frame k, the noise floor of the signal spectrum
is estimated by the Stochastic Spectrum Estimator (SSE)
method, detailed in [9], and then subtracted from the original
magnitude spectrum in logarithmic scale. The peaks are then
estimated from the resulting “flattened” spectrum through the
same strategy used in [6], producing the sequence P(k,p) =
{(fo(k),ao(k)),...,(fr=1(k),ap—1(k))}, where f,(k) and
ap(k) are respectively frequency and magnitude of peak p in
frame k, and P is the number of peaks per frame (chosen as
80). At the end, signal P(k,p), k =0,..., K —1, encapsulates
all relevant peak information along the K signal frames.

The obtained transform coefficients X (k,j) and detected
peaks P(k,p) are then utilized to estimate the reference
frequency f,of, essential to compute the note frequencies that
compose the equal tempered scale. The procedure is described
in [10].

To compute the salience function S(k,p) for each frame
k and peak p, the frequency locations of peak p and each
note from the equal tempered scale with reference frequency
fret are compared. These frequency differences obey a certain
law and can, therefore, be used as a theoretical measure to
determine which of the detected peaks correspond to sound
sources and which correspond to harmonic partials. At this
stage, four additional modifications were proposed and added
to the method. They are addressed in [5].

At last, a post-processing stage was added to remove
ambiguities created by multiples of the existing fundamental
frequencies. The procedure is similar to that introduced in [3].
The main idea is to verify if, for each peak p with corre-
sponding frequency f,, the salience values in each submultiple
frequencies f,/q, for ¢ = 1,2,...,p, is significant. Further
details can be found in [5]. This procedure with all pro-
posed modifications added is called hereafter Modified DLMP
(MDLMP) [5].

An inharmonic model is also included in order to improve
fundamental frequency detection. The chosen model is the
same used in [4], given by

Jo(8) = hfo/1 + BR2, )

where fj is a given fundamental frequency, h is the harmonic
number, and /3 is the inharmonicity coefficient?. Since 3 is
not given, it is estimated by performing an exhaustive search:
10 geometrically spaced values in the interval [1075,1073],
plus the value 8 = 0 [11], are tried, and their corresponding
saliences are computed. The chosen salience is the maximum
among all obtained values.

III. THE FAN-CHIRP TRANSFORM

This section briefly exposes the concepts of the FChT and
clarify each step in its computation.

A. Definition
The FChT is defined in [8] as

o0

X(foa) 2 / £(1), (t)e 271900 gy, 3)

where ¢,,(t) is a time linear warping function given by

ba(t) = <1 + ;at) t. (4)

By applying the variable change 7 = ¢,(t) to Equation (3),
one obtains
oo

X(f,a) = / 2621 (r))e 27 dr, 5)

-1/«
where « is the chirp rate parameter, and ¢_!(t) is given by

62 (1) = —~ + Y2, ©

«

it is assumed that z(¢) = 0 for £ < —1/« to avoid aliasing [7].

From Equation (5), it is possible to notice that the FChT
is actually the Fourier Transform of a time-warped version of
the sinal z(t), z(¢, *(t)). Therefore, the FChT can profit from

the fast implementation of the Discrete Fourier Transform, the
FFT algorithm [8].

B. Implementation

The implementation is done in short consecutive time
frames, usually ranging from 20 to 100ms, of the sampled
audio signal x(n). This procedure, named as Short-Time Fan
Chirp Transform (STFChT), considers that the fundamental
frequencies may be approximated by a linear chirp within each
window [8].

The first step is the time warping caused by ¢, (), as seen
in Equation (5). Since the considered signal is discrete in
time, this step should be performed by means of a nonlinear

2This model was ori ginally conceived for string instruments [11], in the case
of which S is related to physical properties of the string. Mathematically, its
use can be extended to model slightly inharmonic instruments in general.
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sampling. Since only samples at time instances n7g, where
T is the sampling period, can be reached, an interpolation is
carried out [8]. It should be pointed out that, in order to move
on with this time warping operation, it is necessary to have a
pre-determined « value. The next step is to calculate the FFT
of the time warped signal, (¢, (t)).

The estimation of the chirp rate « is a key step when
calculating the FChT of a signal. It is responsible for the
resolution of the resulting transform, since a poor estimation
yields blurred representations [8]. To estimate « an exhaustive
search is done, aiming at obtaining the representation with
maximum sparsity. Originally in [8], the classical salience
as defined in Equation (1) is used for that purpose. Many
instances of the FChT for a number A of pre-determined
values of « are firstly calculated, and then the salience function
o(fo,aq) for each ay,, with a = 1,2,..., A, and a grid of
frequency values fj°, is computed. As a result, a salience plane
p(fo, ) is obtained. The point (f7, a*) corresponding to the
maximum value of p(fo,a) is then chosen as the estimated
fundamental frequency f; and chirp rate . Further details
can be found in [8].

The same procedure can be applied to estimate the chirp
rate o when combining the FChT to the timbre-independent
salience function. Here, instead of an harmonic accumulation
as sparsity measure, the salience method explained in Sec-
tion II was used.

As in the MDLMP method, a post-processing stage is per-
formed in order to attenuate ambiguities caused by multiples
of fy. The procedure is the same as in [3]; here it is also
applied to attenuate submultiples of fj. To remove submultiple
spurious peaks in the obtained salience function [8], for each
fundamental frequency candidate fj, the salience values at its
multiples p(qfo), ¢ € IN such that qfy is lower than the
maximum considered fundamental frequency candidate, are
weighted and subtracted from the salience at fo (p(fo)) itself.
Details and additional considerations are addressed in [8].

IV. EXPERIMENTS AND RESULTS

This section presents a set of informative experiments and
their respective results.

A. Experiments

As previously said, the main target of this work is to extract
the existing fundamental frequencies in a given audio signal
2(n). In particular, it aims to compare regarding efficiency:
two time-frequency transforms, the STFT and the STFChT;
and two different ways of computing the salience function, the
classical and the MDLMP. To this end, a set of four experi-
ments was designed in such a way that each of them contains a
possible combination of transform and salience computation:
STFT with original salience, STFT with MDLMP, STFChT
with original salience, and STFChT with MDLMP.

In order to illustrate the effects of each experiment in the
efficiency of fj extraction, two signals were considered. The

3The chosen frequency values are fundamental frequency candidates. Here,
a grid of 192 geometrically-spaced values per octave were adopted in the
range from 100 to 1600 Hz.

first one is a synthetic harmonic signal frequency-modulated
by a sinusoid. Its fundamental frequency fy(¢) is given by the
following expression

fot) = f1(1 =22 sin(27 fot) + f1, (7

where f1 is the central frequency and f5, the modulation
frequency. The values were chosen to mimic a typical vibrato,
as found in singing voice performances, namely, 500 Hz and
6 Hz, respectively. The resulting signal consists of a total of
15 harmonic partials (considering the fundamental frequency),
whose amplitudes are inversely proportional to the partial
index. The second signal is an excerpt of a musical piece by
Villa-Lobos, called Bachianas Brasileiras no. 6: a duet for flute
and bassoon, often simultaneously played. Their fundamental
frequencies were manually tracked and annotated departing
from a specially computed STFT to serve as a reference and
can be seen in Figure 2 (black and dashed black, respectively).

For the synthetic signal, only one fundamental frequency
is present, and therefore a single fundamental frequency is
extracted in each experiment. For the real signal, the presence
of two simultaneous sources was considered to be known.
Therefore, the two most prominent salience values were cho-
sen as the ones corresponding to the existing fundamental
frequencies in the signal.

To evaluate the robustness of the methods to background
noise, Gaussian white noise was added to the clean signals. For
the synthetic signal, six different SNR values were considered,
namely, 0dB, 10dB, 20dB, 30dB, 40dB and infinite (i.e., no
added noise). For the real signal, the experiments were only
performed twice: with clean and 30-dB SNR signals. Besides
the SNR, the number of samples N of the analysis window
was also varied: 1024, 2048, and 4096 for the synthetic, and
2048, 4096, and 8192 for the real signal.

Two different measures were adopted here. The first one is
the mean squared error (MSE) between the reference and the
estimated fundamental frequency along time. The second is the
hit rate considering an error margin of +3%. The MSE has
been included because the hit rate for the synthetic signal is
usually 100%, and thus a more stringent measure is necessary.
The same measure is not applied to the real signal, since it
is not possible to quantify the human error inherent to the
manual extraction of fundamental frequencies.

The remaining parameters used during simulations are listed
below:

o Sampling frequency f5 of 44.1 kHz for both signals;

o Hop size 7 of 256 samples;

o A = 25 values of the chirp rate « linearly spaced between
—4.13 and 4.13 for the synthetic signal, and between
—1.03 and 1.03 for the real signal; and

o Number of harmonics ny of 10 for the synthetic signal
and 15 for the real signal for both saliences;

B. Results

The first experiments are performed for the synthetic vi-
brato. Table I shows the hit rates obtained using the STFT
combined to each salience computation method. For each cell,
the upper value corresponds to the classic salience approach
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and the lower value to the MDLMP method. It is possible
to notice that the classical approach largely outperforms the
MDLMP method for this choice of time-frequency transfor-
mation. For the specific case of N = 1024 samples and no
added noise, however, it should be noted that the obtained
MSE values are 1.42 and 0.29, respectively.

TABLE I
HIT RATES (IN %) FOR SYNTHETIC SIGNAL USING: STFT+ORIGINAL
SALIENCE (UPPER VALUES); AND STFT+MDLMP (LOWER VALUES)

SNR (dB) 0 10 20 30 40 00
1024 79.6 | 100 | 100 | 100 | 100 | 100
36.1 | 49.0 | 57.7 | 72.2 | 87.8 | 100
2048 63.8 | 100 | 100 | 100 | 100 | 100
25.1 | 39.8 | 57.0 | 54.2 | 62.6 | 98.0
4096 47.6 | 979 | 98.8 | 100 | 100 | 100
19.8 | 37.5 | 48.6 | 543 | 39.5 | 77.8

general, one can notice that the MDLMP method overcomes
the classical salience computation method when it comes to
estimating the two existing pitches. This is due to the coinci-
dence of harmonics between the two fundamental frequencies.
When performing the harmonic accumulation, the saliences
obtained for common submultiples between both fundamental
frequencies can end up having a greater value than the fun-
damental frequencies themselves. The post-processing stage
mentioned in Section III does not help in this case, since
the true fundamental frequencies are attenuated due to the
high salience values of coincident submultiples. Furthermore,
while the salience mean decreases, its variance increases in
frequency* [8], thus negatively affecting the flute’s higher
fundamental frequency estimation, which can be verified by
the small hit rate success for this instrument.

TABLE III
HIT RATES (IN %) FOR REAL SIGNAL USING: STFT+ORIGINAL SALIENCE

Table II shows the results obtained with the STFChT
combined to each salience computation method. Again, for
each cell, the upper value corresponds to the classic salience
approach and the lower value to the MDLMP method. Since
the MDLMP method presented a hit rate of 100% for all
proposed cases, and the same occurs for the classic salience
for all SNR values above 10 dB (except for the case N = 1024
@ 10dB SNR, with 99.6%), the MSE values are shown
instead. Clearly, the MDLMP case brought a considerable
overall improvement if one observes that the corresponding
MSE values are lower than the ones obtained with the classical
salience for NV equal to 1024 and 2048. Since N is a flexible
parameter that can be chosen according to the chosen signal
and method, the most relevant result is that the minimum
overall error was obtained by the combination of the STFChT
with the MDLMP salience. It is worth mentioning that the hit
rate results obtained for a 0 dB SNR with the classical salience
were 82.3%, 78.9%, and 66.7% for analysis window sizes of
1024, 2048, and 4096, respectively.

TABLE 11
MSE VALUES FOR SYNTHETIC SIGNAL USING: STFCHT+ORIGINAL
SALIENCE (UPPER VALUES); AND STFCHT+MDLMP (LOWER VALUES)

(UPPER VALUES); AND STFT+MDLMP (LOWER VALUES)

N Flute Bassoon Total
Clean | 30dB [ Clean | 30dB | Clean [ 30dB
2048 37.6 36.1 73.9 71.5 55.5 53.6
86.1 86.3 63.8 63.8 75.1 75.1
4096 26.3 23.5 82.5 80.5 54.1 51.7
90.1 89.2 64.4 63.8 77.4 76.6
2192 21.8 19.4 84.7 82.7 52.9 50.8
87.8 88.2 66.1 65.7 771 771
TABLE IV

HIT RATES (IN %) FOR REAL SIGNAL USING: STFCHT+ORIGINAL

SALIENCE (UPPER VALUES); AND STFCHT+MDLMP (LOWER VALUES)

N Flute Bassoon Total
Clean [ 30dB | Clean | 30dB [ Clean | 30dB
2048 37.9 35.4 77.1 75.3 57.3 55.2
86.6 86.4 64.4 64.6 75.6 75.6
4096 28.5 22.7 86.7 84.4 57.3 53.3
89.2 88.0 64.6 63.5 77.0 75.9
3192 24.9 20.7 90.7 86.2 57.5 53.1
86.0 85.7 67.4 66.1 76.8 76.0

SNRB) |0 [ 20 | 30 | 40 | oo
(oo 28205 | 1.83 | 1.80 | 1.66 | 1.43
0.64 | 034 | 032 | 031 | 031
i 70l | 088 | 0.89 [ 0.91 | 0.88
059 | 056 | 0.55 | 0.55 | 0.55
180 | 2.04 [ 212 [ 1.90 | 1.93
4096 637 | 636 | 638 | 6.40 | 6.38

Now, the same experiments are performed for the real
signal, the duet excerpt. Tables IIl and IV show the hit
rates for the three chosen sizes of analysis windows (2048,
4096, and 8192), when combining each salience computation
method to the time-frequency transforms STFT and STFChT,
respectively. They contain the individual rates for each in-
strument, flute and bassoon, as well as the total hit rate. In

When observing the bassoon’s hit rates for the MDLMP
method, one notices that these values are relatively lower than
the ones obtained by using the classical salience function.
Figure 2 shows the estimated fundamental frequencies in red
and blue for both salience functions. The upper figure shows
the results for the classical salience approach, while the lower
figure, for the MDLMP method. It is possible to see that for
time instances between 1.4 and 2.5 seconds, the latter method
was not capable of detecting the bassoon’s fundamental fre-
quency, thus decreasing the corresponding hit rates. The same
issue was observed for the three sizes of analysis windows,
and its explained by the fact that the second harmonic of

“In order to soften the negative impact caused by the mean decrease, a
post-processing stage was added, where a noise floor is first estimated by
means of the the SSE method (detailed in [9]) and then subtracted from the
salience function.
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that specific note is more prominent than the fundamental
frequency itself, and the post-processing stage mentioned in
Section II was not able to eliminate the ambiguity.

—1st. Reference

---2nd. Reference

——1st. Estimated Fundamental
—2nd. Estimated Fundamental

Classical Salience
.

Fig. 2. Comparison between classical and timbre-independent saliences
using an analysis window of 8192 samples. The first and second estimated
fundamental frequencies (in blue and red, respectively) using the STFChT
with the classical (upper figure) and the timbre-independent (lower figure)
saliences are shown.

It is also worth mentioning that no significant differences
were observed for the MDLMP method combined to the
STFChT when compared to the same method combined to the
STFT. Actually, slightly better results were obtained for the
bassoon and slightly worse for the flute, resulting in (almost)
no changes in the total hit rates. These results make sense
in some level, since the bassoon was performing a vibrato,
which can profit from the STFChT, and the flute played fairly
stationary notes, meaning that the STFT (or a STFChT were
the chirp rate o was set to zero) is the best choice. Another
possible explanation is that the melodies of both existing
fundamental frequencies were manually extracted and can
therefore present some errors. Further investigation should be
made in order to determine the best way of profiting from
the sparsity provided by the STFChT when combined to the
MDLMP method.

When adding Gaussian white noise to the clean signals, it
is possible to notice that the hit rates attained by the classical
salience decreased around 2% and 3.5% when using the STFT
and STFChT, respectively. Considering that the mean hit rates
for both cases were around 54% and 57%, respectively, this
means a decrease of around 4% and 6%, respectively. In the
case of the MDLMP method, these decreases were around
0.4% and 0.8% for the STFT and the STFChT, respectively,
which are considerably smaller.

At last, it is important to point out that the computational
complexity is considerably lower for the MDLMP method
when compared to the classical salience. While the latter
method assigns a salience value to each considered funda-
mental frequency candidate (769 values in the present setup)
the MDLMP computes it for only a pre-determined number
of detected peaks (P = 80 in the present setup).

V. CONCLUSIONS

In this paper, the performance of an f; extraction algo-
rithm for polyphonic music combining one of two time-
frequency transforms, the STFT and the STFChT, to one of

the salience functions, the original and the MDLMP, was
evaluated. Its main innovation lies in using STFChT with
the MDLMP method for fundamental frequency estimation.
Some experiments were carried out in order to analyse the
precision in terms of MSE and hit rate, and also to evaluate the
performance degradation caused by additive Gaussian white
noise.

As results, one can notice that better hit rates were obtained,
in general, for the MDLMP when compared to the classical
salience, specially for noise-corrupted signals. When using the
STFChT+MDLMP method, better results were obtained for
a synthetic monophonic signal when compared to the STFT;
the classical salience outperformed the MDLMP only when
combined to the STFT in the presence of noise.

When comparing the obtained hit rates for the real signal
by using the MDLMP for both time-frequency transforms, no
considerable improvements were introduced by the STFChT.
This indicates that some further work is needed in order to
find out better ways to combining the FChT to the timbre-
independent salience. In this context, of course, more encom-
passing tests must be performed to better characterize the
proposed STFChT+MDLMP strategy.
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