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Abstract—In this paper, the problem of device identification
based on sensor noise pattern in open scenarios is addressed. This
context is common in practice and quite challenging because of
the lack of reference to evaluate statistical similarity measures
between image and suspect camera noise patterns. A device
identification procedure based on an artificial neural network
classifier is proposed, whose parameters are optimised by extreme
learning machine algorithm and repeated double cross validation
techniques. In addition, a strategy to select training patterns,
aiming at open scenario situations, is presented. Experimental
results are shown for the sake of performance assessment.
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I. INTRODUCTION

This work addresses the problem of device identification

based on the photo-response non-uniformity (PRNU) of cam-

era sensors in open scenarios. In forensics, device identifica-

tion techniques verify the connection between a signal under

analysis and an acquisition equipment. We are particularly

interested in digital camera identification. In this context, both

digital image/video to be analysed and the suspect camera

must be available. In order to find out whether such a camera

produced the photo/video in hand, the following approaches

can be adopted alone or combined: metadata extraction and

evaluation, watermark checking, and sensor noise pattern

analysis [1].

The first approach is the simplest and the least robust among

the three. It consists in extracting the metadata contained in

an image or video file, which is written automatically by

the acquisition equipment itself. For camera identification,

the information of interest is the model and serial number

of the camera. Nevertheless, metadata is considered a weak

evidence provider, because such an information generally

remains unprotected and can be easily modified or erased by

simple file manipulation.

The next approach, analysis of watermark consistency, re-

quires a camera capable to insert a digital watermark in files it

produces, containing identification data. In addition, to serve

as a reliable feature for forensic purposes, such a watermark

should be relatively robust to re-quantisation, resizing, and

filtering operations. In this case, the origin of picture/video
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would be evaluated by comparing the watermark data extracted

from the test signal with that of the suspect camera. The

drawback here is exactly the necessity of having an acqui-

sition equipment with watermarking capabilities, which is not

common if one considers the typical context the most forensic

institutes deal with.

The third approach aforementioned is the analysis of sensor

noise pattern, also known as PRNU, which is due to dif-

ferences among photo-sensor elements in converting light to

electrical signal [2], [3]. Such differences provide a sort of

inherent watermark, which uniquely characterises each photo-

sensor and constitutes the so-called sensor fingerprint. For

such an approach, the identification relies upon the comparison

between the estimated camera PRNU and the PRNU obtained

from the picture under analysis.

Lately, device identification techniques based on the anal-

ysis of sensor noise pattern have gained much attention over

other approaches because of the following PRNU properties:

a) the noise pattern is unique to each sensor; b) every sensor

exhibits it and every picture as well (with the exception of

completely dark images); c) the PRNU is relatively robust to a

wide range of image processing operations, such as lossy com-

pression, filtering, and gamma adjustment; and d) the PRNU

characteristics are stable in time and under a wide range of

physical conditions. Nevertheless, PRNU-based identification

is still an issue because correlation values between picture

and camera PRNUs are quite low, even for images/videos

taken from the suspect camera. Such an aspect is mainly

due to a typically long acquisition chain, often comprising

demosaicing, gamma correction, colour space conversion and

lossy compression.

In device identification research papers, in general, tech-

niques are presented and evaluated under the so-called closed

scenario, where we have a finite set of cameras and the test

picture is known to be taken by one of them. However, in

most practical scenarios, just one camera is available (open

scenario). In this latter case, interpretation of PRNU statistical

similarity values becomes more difficult, due to the absence of

reliable reference, which would allow a clear discrimination

whether a picture is strongly or weakly linked to a particular

camera.

The contributions of this paper are twofold: (a) we present

a strategy for training a device identification method to be

applied in open scenarios, and (b) we also propose an ap-

proach to classify test images, concerning their connection to

the suspect camera, based on neural networks and extreme

learning machine (ELM) [4].
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The remaining of this text is organised as follows. Section II

reviews image sensor output modelling as well as the PRNU

estimation process. In Section III, the proposed approach for

a practical identification procedure is presented in details.

Section IV shows and discusses some experimental results.

And in Section V, concluding remarks are drawn.

II. DEVICE IDENTIFICATION BASED ON SENSOR NOISE

PATTERN

This section presents the sensor output model adopted in this

work as well as the strategy to estimate sensor fingerprints. In

all expressions, boldface font (e.g., I) represents matrices, with

[i, j] denoting their element indices. If not stated otherwise,

matrix operations are element-wise.

A. Sensor output model

In the formation process of a non computer generated

digital image, real scene information passes through several

stages, as wavelength filtering (usually by using a colour filter

array), light-to-electrical current conversion, signal amplitude

quantization, colour channel interpolation (demosaicing), and

lossy coding (see Fig. 1). Such stages are common to most

digital cameras, cellphones and camcorders spread worldwide.

Each of them inserts some kind of distortion into the original

image signal, which must be taken into account in modelling

the image formation process.
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Fig. 1. Imaging chain.

A simplified model for a single-channel image I is given

by [2]

I = gγ [Y +YK+Ω]
γ
+Θ (1)

where g represents the colour channel gain (different for each

one); γ represents the gamma correction factor; Y denotes

the incident light intensity in the absence of any noise or

distortion; K is a zero-mean multiplicative factor responsible

for the device PRNU (camera fingerprint); Ω is a combination

of several types of noise (dark current, shot noise, etc.); and

Θ models the combined distortion due to quantisation and/or

lossy compression.

B. Camera fingerprint estimation

Based on expression 1, a maximum likelihood (ML) esti-

mator for the PRNU can be derived as [2]

K̂ =

d
∑

k=1

WkIk

d
∑

k=1

(Ik)
2

(2)

where d is the total number of sample images used; Ik

represents the k-th sample image; and Wk corresponds to the

residual noise of Ik , which in turn is given by

Wk = Ik − Î
(0)
k (3)

where the Î
(0)
k is a denoised version of Ik (for details, see [5]).

The larger the total number of sample images (d), the better

the PRNU estimation. For acceptable quality estimation, d

typically ranges from 30 to 50 [2].

The PRNU ML-estimation (K̂) often contains some un-

desirable artefacts, which are caused by colour interpolation,

lossy compression, on-sensor signal transfer and sensor design

choices. Such artefacts are of two types: periodic and non-

periodic. The periodic artefacts can be mitigated by subtracting

the averages from every row and column of K̂. While the non-

periodic artefacts can be alleviated by a Wiener filter applied

to the frequency domain [6].

For colour images, the PRNU ML-estimation procedure is

repeated for each colour channel and then the corresponding

estimations can be combined to obtain an overall camera

PRNU.

C. Image fingerprint estimation

The estimation of the PRNU from a single image (i.e. the

test image we want to analyse) is performed by taking the

corresponding output of a high-pass filter. In this work, we use

the technique based on wavelet decomposition that is presented

by Mihcak in [2], [5].

III. PROPOSED APPROACH

This section presents a practical procedure to perform

device identification in open scenarios. The proposed approach

comprises a classifier based on a neural network trained by

an extreme learning machine algorithm (ELM) with model

selection accomplished by a repeated double cross validation

(RDCV) strategy. From this point on, we consider the image

under investigation has the same dimensions of the estimated

camera PRNU and does not have undergone any kind of

geometrical transformation, such as scaling or rotation.

A. Statistical similarity metric

By noise pattern detection, we mean the procedure that

evaluate the connection between suspect camera and test image

by assessing the statistical similarity between their estimated

PRNUs. This can be represented by a binary hypothesis testing

problem as
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H0 : K1 6= K2

H1 : K1 = K2
(4)

where K1 and K2 are the camera and test image PRNUs,

respectively.

The null hypothesis H0 indicates the test image was not

taken by the suspect camera (i.e. their fingerprints are differ-

ent), while the alternative hypothesis H1 says the opposite.

Two statistical metrics widely employed in PRNU-based

techniques are the well-known sample Pearson’s correlation

coefficient (CC) and the so-called peak-to-correlation energy

(PCE) [7]. In this work, a windowed CC is used, called

step window Pearson’s correlation coefficient (SWCC), whose

definition follows.

r[i, j] =

∑

(k,l)∈W

(

X[k, l]− X̄W

) (

Y[k, l]− ȲW

)

√

∑

(k,l)∈W

(

X[k, l]− X̄W

)2 ∑

(k,l)∈W

(

Y[k, l]− ȲW

)2

(5)

where r[i, j] represents the SWCC within a N × N window

W with centre at [i, j]; X and Y are two samples, whose

statistical similarity is being evaluated; X̄W and ȲW denote

the arithmetic mean of X and Y, respectively, for a given W .

There are some reasons to choose the SWCC: 1) local

contributions of image content to PRNU term are better

characterised; 2) multiple values of CC for a single image,

instead of just one CC value per image, are obtained; 3) the

computational complexity is lower when compared with PCE.

In general, independently of the statistical metric chosen,

decision for H0 or H1 is performed by comparison against a

threshold. Rigorously, two thresholds would be needed, one

corresponding to the probability of false positive and other

to the false negative. However, the determination of those

thresholds is an issue, asking for training procedures or the

availability of some a priori statistical model, which is not

easy to obtain [8].

B. Dealing with open scenarios

As stated in Section I, two scenarios are possible for device

identification situations. In the closed scenario, typical in

research papers, there is a finite set of cameras and the test

picture is known to be taken by one of those cameras. Thus,

hypothesis H1 is necessarily true for one of the cameras and

decision is made in favour of the camera whose PRNU best

correlates test image PRNU. In fact, no decision threshold is

required at all. In the second context, known as open scenario,

common in practical situations, just the suspect camera and the

test image are available. In this case, a decision threshold is

fundamental to choose between H0 and H1. Without such

a threshold, a forensic technician cannot evaluate correctly

the assessed statistical similarity of PRNUs. In addition, the

determination of the decision threshold is not an easy task, as it

varies from camera to camera and depends highly on a training

set composed of true examples of H0 and H1 as well. Then,

for open scenarios, the parameters of a device identification

procedure are specific for a given suspect camera and the

performance of such a procedure depends on the training set.

We consider the device identification task as a classification

problem, where two classes are assumed: images acquired by

the suspect camera (class 1); and images acquired by other

cameras (class 0). Class 1 patterns can be obtained from the

suspect camera itself, by taking as many pictures as necessary

to derive a satisfying camera model. In turn, we propose that

class 0 examples might come from public bases on internet.

Some of them allow searching by camera make and model,

as well as picture resolution, which is very useful in terms of

saving time1. Class 0 examples in this work are all acquired

by cameras of the same make and model of suspect camera,

because we assume this is the worst situation for correct device

identification.

Next we show a summary of the proposed steps to perform

device identification in open scenarios:

1) Estimate suspect camera PRNU (see Section II-B).

2) Obtain class 1 patterns of the training set: by taking N

pictures (random scenes) with the suspect camera.

3) Obtain class 0 patterns of the training set: from internet,

download N pictures taken by different cameras of the

same make and model of the suspect camera.

4) Feature extraction: for each image k of the training set.

a) Estimate picture PRNU (see Section II-C).

b) Calculate the SWCC (see Section III-A).

c) Calculate the mean (µk) and variance (σ2
k) of

SWCC.

d) Store the features (µk and σ2
k).

5) Train the neural network classifier (see Sections III-C

and III-D).

6) Test the image under investigation.

C. Extreme learning machine

In this section, we present the extreme learning machine

(ELM) algorithm, chosen to train the neural network classifier.

The ELM is a learning scheme for single-hidden layer feed-

forward neural networks (SLFNs) [4], which provides faster

learning and good performance.

The ELM algorithm for a given training set

ℵ = {(xk, tk) |xk ∈ R
n, tk ∈ R

m, k = 1, 2, . . . , N},
activation function g(·), and hidden node number Ñ is:

1) Randomly assign input weight wi vectors and bias bi,

with i = 1, 2, . . . , Ñ .

2) Calculate the hidden layer output matrix H,

H =







g (w1·x1 + b1) · · · g (wÑ ·x1 + bÑ )
...

. . .
...

g (w1·xN + b1) · · · g (wÑ ·xN + bÑ)







(6)

where, wi·xk is the inner product between wi and xk.

3) Calculate the output weight β

β = H
−1

T (7)

1Class 0 images of this work were downloaded from Flickr web page
(http://www.flickr.com)
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where H
−1 is the inverse of H and T = [t1, . . . , tN ]

T
.

In order to define the number of hidden nodes which

best performs, the repeated double cross validation (RDCV)

approach is used.

D. Repeated double cross validation

The repeated double cross validation (RDCV) is a strategy

suited for small data sets to estimate the optimum complexity

of linear regression models, and the prediction errors for new

cases [9]. A pseudo programming code for RDCV follows:

FOR r = 1 TO nr (nr: number of runs)

1) Split data (D) randomly into nf folds of approximately

equal size.

2) FOR f = 1 TO nf (nf : number of outer loop folds)

a) Select the f th fold as the test set, Dt = D(f).
b) Select the others folds as the calibration set,

Dcal = D −Dt.

c) Split Dcal into ns folds of approximately equal

size.

d) FOR s = 1 TO ns (ns: number of inner loop

folds)

i) Select the sth fold as the validation set, Dv =
Dcal(s).

ii) Select the others folds as the training set,Dtr =
Dcal −Dv.

iii) Train the model M with Dtr.

iv) Apply the model to the validation set Dv.

NEXT s

e) Train the model M with all calibration set Dcal.

f) Apply the model to the test set Dt.

NEXT f

NEXT r

After nr runs, a set of nr performance values for each

pattern in D is available. Such a procedure is repeated for

different numbers of hidden nodes in order to select the

classifier that best performs.

IV. EXPERIMENTAL PROCEDURE AND RESULTS

The intention behind the conception of the following experi-

ments is to evaluate the performance of the proposed approach

in terms of device identification in open scenarios. By now,

we are not interested in finding either the best parameter to

configure the RDCV or the best architecture for the ELM.

We assume two suspect cameras: a Sony-DSC-W210, serial

number 6507300 (Sony 1); and a Fuji-FinePix JZ300, serial

number OAQ38568 (Fuji 1). Following the steps described in

Section III-B, we take, for each camera, 30 pictures of a cloudy

sky to estimate the corresponding camera fingerprints, and

other 100 pictures of random content to obtain class 1 patterns.

All images are captured with full resolution (4000×3000) and

high quality. From Flickr web page, a number of 100 images

taken by cameras of the same model as Sony 1 (Sony Flickr 1)

and other 100 of the same model as Fuji 1 (Fuji Flickr 1) are

downloaded to serve as class 0 examples.

For the SWCC, we set the window size to be 128×128,

with a step size of 64 pixels, which produces a SWCC set of

2745 values per image.
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Fig. 2. Comparison between CC and the mean of SWCC for 100 images
of each camera (Sony 1 and Sony Fickr 1) with camera fingerprint estimated
from Sony 1.
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Fig. 3. Comparison between CC and the mean of SWCC for 100 images
of each camera (Fuji 1 and Fuji Fickr 1) with camera fingerprint estimated
from Fuji 1.

In Figures 2 and 3, we present a comparison between the

mean of SWCC and the traditional CC for suspect cameras

Sony 1 and Fuji 1, respectively. For both suspect cameras,

SWCC exhibits some evidence of superior class discrimina-

tion, when compared with CC. The authors speculate that

windowing characterise better the influence of image content

over PRNU estimation.

Figures 4 and 5 show the obtained success rates for the

device identification method based on a SLFN classifier, which

is optimised by the ELM algorithm in conjunction with the

RDCV strategy, as a function of the number of hidden nodes.

The experimental procedure considers as activation function

g(· ) the sigmoid and normalised outputs into [−1, 1] interval.
The RDCV is set to run 100 times, with 5 folds in the outer

loop and 10 folds in the inner loop (see Section III-D). The

number of hidden nodes ranges from 2 to 15.

For the results in Figure 6, we use pictures from Fuji 1

and Fuji Flickr 1 to train a SLFN classifier with 6 hidden

nodes. A set of 200 patterns (100 from class 0 and 100 from
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Fig. 4. Device identification success rate as a function of the number of
hidden nodes in a SLFN optimised by ELM and RDCV (100 executions, 5
folds in the outer loop and 10 folds in the inner loop), with camera fingerprint
estimated from Sony 1. In the box plots, red line and red cross denote median
and outliers, respectively.
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Fig. 5. Device identification success rate as a function of the number of
hidden nodes in a SLFN optimised by ELM and RDCV (100 executions, 5
folds in the outer loop and 10 folds in the inner loop), with camera fingerprint
estimated from Fuji 1. In the box plots, red line, red cross, black line and
blue box denote median, outliers, minimum value and lower-to-upper quartile,
respectively.

class 1) is randomly split into train (80%) and validation

(20%) subsets. For testing, we use an ensemble of 350 images

made up of: 100 pictures taken by two cameras (50 pictures

each) of the same model of Fuji 1 (serial numbers OAQ38657

and OBQ39278), identified as Fuji 2 and Fuji 3; 50 images

acquired with a camera of the same model of Sony 1 (se-

rial number 6507323), named Sony 2; 100 images taken by

Sony 1; and 100 pictures downloaded from Flickr web page,

identified as Sony Flickr 1. Figure 6 shows all test images

as well as the decision boundary of the classifier in feature

plane. Although, training phase is performed only with Fuji 1

and Fuji Flickr 1 images, the classifier is able to cope with

images obtained by cameras of different makes and models.

V. CONCLUSIONS

In this paper, the problem of device identification is ad-

dressed. Specifically, a procedure based on a SLFN classifier,
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Fig. 6. Test images and decision boundary in the feature plane, with camera
fingerprint estimated from Fuji 1.

optimised by ELM algorithm in conjunction with RDCV, is

proposed as well as a strategy to select the training patterns in

order to be applied to open scenario situations. Experimental

results demonstrates the proposed method performs well.

Further investigation should consider device identification for

pictures subjected to geometric transformations and video

signals as well.
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