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Trilinear Wiener Filtering: Application to
Equalization Problems

Lucas N. Ribeiro, João C. M. Mota, André L. F. de Almeida

Abstract— This paper presents a trilinear equalizer that is
based on the classical Wiener filter. We review the theory of
multiway arrays and then apply it in constructing a model
of operation for the filter. However, the cost function of the
estimation problem in the model is nonlinear. This problem
overcame by using a property of the tensor versus vector product,
allowing us to divide the nonlinear optimization problem in three
linear problems. Then we develop an iterative algorithm for
obtaining the optima filters for the problems. The performance
of the filter is evaluated in two applications problems.

Keywords— Wiener Filtering, Multilinear Algebra, Alternating
Least-Squares, PARAFAC.

I. INTRODUCTION

In the past years, multidimensional models have been used
to solve signal processing problems applied in many fields like
psychometrics [7], data analysis [11], chemometrics [16], edu-
cametrics [15] and communications systems [5]. Sidiropoulos
on his paper [14] described a blind PARAFAC receiver that
explored the diversity of DS-CDMA systems for estimating the
factor matrices of the transmitted datacubes. In his paper [13],
Muti et al. considered multiway filtering, using the subspace
method and multimode Principal Component Analysis (PCA).
His second approach on filtering was extending classical
Wiener to tensor data. He applied the multiway Wiener filter
on digital image processing and multicomponent seismic data.

In his application of the multiway Wiener filter, a colored
image is modelled as a third order tensor X . Given a received
tensor R, an estimation X̂ is generated by successively fil-
tering the received tensor by N n-mode filters. The filtering
is performed by multiplying a filter matrix by each slice of
the input tensor. The optimization criterion used to determine
the optimal n-mode filters is the minimization of the mean-
squared error (MSE) between the desired signal X and the
estimation X̂ .

O. Filiz [6] proposed an alternating adaptative algorithm for
estimating rank constrained spatial-temporal filters, since the
solution for the optimization problem has not closed form.
Using this same idea of dividing a complex optimization
problem in simple problems, we propose a trilinear filter
that instead of estimating the factor matrices of information
about the channel, we devise the optimum trilinear filter that
minimizes the error in the mean square sense. The three factors
vectors of the filter will be obtained by solving the classical
Wiener-Hopf equations, as we will see in the development.
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The paper is organized as follows: section II presents some
concepts about tensors, in section III, we describe a model
for transmitting signal throughout trilinear systems and noise.
Section IV describes the algebric development to obtain the
Wiener solutions and V describes the trilinear alternating least-
squares algorithm for obtaining the optimal solutions. Finally,
section VI shows some applications and we conclude the paper
on section VII.

II. MULTI-WAY ARRAYS

A N th order tensor is a multidimensional array whose
entries are accessed via N indices [13]. It can be represented
by U ∈ RI1×I2×...×IN for example. If U has rank one, it can
be written as the outer product “◦” of N vectors, i.e.:

U = u1 ◦ u2 ◦ . . . ◦ uN (1)

where u1 ∈ RI1 , u2 ∈ RI2 , ... , uN ∈ RIN are its factor
vectors. The rank of a tensor X is defined as the smallest
number of rank-one tensors that generates X as their sum [9].
For example, consider that X ∈ RI1×I2×I3 has rank R, then
we can decompose it as:

X =
R∑

r=1

x1,r ◦ x2,r ◦ x3,r (2)

where R is a positive integer and x1,r, x2,r, x3,r are the
factor vectors of the rth rank-one tensor. The equation (2) is
known as the PARAFAC (parallel factors) decomposition [2].

Hereafter, the notation for the nth element of a certain vector
z, will be denoted by z(n). Then, the element of a rank R third
order tensor X indexed by (i, j, k) is:

xijk =
R∑

r=1

x
(i)
1,rx

(j)
2,rx

(k)
3,r (3)

A tensor can be also decomposed in slices, which are
bidimensional sections defined by fixing all but two indices.
Consider a third order tensor X ∈ RI1×I2×I3 that can be
composed like this: X = x1 ◦ x2 ◦ x3. Its slices through
the three modes are: Xi·· ∈ RI2×I3 , X·j· ∈ RI3×I1 and
X··k ∈ RI1×I2 , where Xi·· denotes the ith slice of the first
mode, X·j· is the jth slice of the second mode and X··k is
the kth slice of the third mode. In this paper, we will build
the unfolded of a third order tensor, in the following way:

X(1) = [X1··, . . . ,XI1··]
T ∈ RI1I2×I3 (4)

X(2) = [X·1·, . . . ,X·I2·]
T ∈ RI2I3×I1 (5)
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X(3) = [X··1, . . . ,X··I3 ]
T ∈ RI3I1×I2 (6)

where X(n) is the tensor X unfolded in the mode-n.
These unfolded matrices can be represented by the following
equations:

X(1) = (x1 ⊗ x2)x
T
3 (7)

X(2) = (x2 ⊗ x3)x
T
1 (8)

X(3) = (x3 ⊗ x1)x
T
2 (9)

where “⊗” denotes the Kronecker product.
The n-mode product of a N th order tensor R ∈

RI1×I2×...×IN with a vector v ∈ RIn , denoted by R ×n v,
results into a tensor Y of order N−1 whose size is I1× . . .×
In−1× In+1× . . .× IN [1]. Its elementwise representation is:

yi1...in−1in+1...iN =

IN∑
in=1

ri1i2...iN vin (10)

In this paper, we will utilize the consecutive n-mode vector
product between a rank R third order tensor X ∈ RI1×I2×I3

and three vectors v1 ∈ RI1 , v2 ∈ RI2 and v3 ∈ RI3 .
Since each n-mode vector product decreases one order of
the resulting tensor, multiplying a tensor by three vectors
results into a zeroth order tensor, i.e. a scalar. This consecutive
product is written as:

y = X ×1 v1 ×2 v2 ×3 v3 (11)

where y is a real scalar. Using equation (10), we can write
the elementwise representation of xijk, equation (3):

y =

I1∑
i=1

I2∑
j=1

I3∑
k=1

v
(i)
1 v

(j)
2 v

(k)
3 xijk (12)

Substituting the equation of the elementwise representation
fo X , equation 3, into equation (12):

y =

R∑
r=1

I1∑
i=1

I2∑
j=1

I3∑
k=1

v
(i)
1 v

(j)
2 v

(k)
3 x

(i)
1,rx

(j)
2,rx

(k)
3,r (13)

=

R∑
r=1

(vT
1 x1,r)(v

T
2 x2,r)(v

T
3 x3,r) (14)

Applying the commutative property of the scalar product
between the vectors and rearranging the factors:

y =
R∑

r=1

(vT
3 U1,rv2)(x

T
1,rv1) (15)

where U1,r = x3,rx
T
2,r. Applying the vec(·) operator on

equation (15), and knowing that [12]:

vec(ABC) = (CT ⊗A)vec(B) (16)

we have that equation (15) becomes:

y =
R∑

r=1

vec(vT
3 U1,rv2)(x

T
1,rv1) (17)

Since vec(U1,r) = x2,r ⊗ x3,r, equation (17) turns into:

y =
R∑

r=1

(v2 ⊗ v3)
T (x2,r ⊗ x3,r)x

T
1,rv1 (18)

substituting equation (8), we obtain:

y =
R∑

r=1

(v2 ⊗ v3)
TX

(r)
(2)v1 (19)

where X
(r)
(2) is the mode 2 unfolding of the rth rank one

tensor of the PARAFAC decomposition of X . The equation
(19) brings an important result, for it is the matricial product
version of the n-mode vector product. If we initiate this devel-
opment isolating either (xT

2 v2) or (xT
3 v3) on equation (14)

and repeating the development, we will obtain respectively
these equations:

y =
R∑

r=1

(v3 ⊗ v1)
TX

(r)
(3)v2 (20)

y =

R∑
r=1

(v1 ⊗ v2)
TX

(r)
(1)v3 (21)

The equations (19), (20) and (21) will be important in section
IV.

III. THE TRILINEAR FILTERS PROCESSING MODEL

Consider that we would like to transmit the real set of
sequences {s1(n), s2(n), . . . , sR(n)} through the rank-one tri-
linear systems {H1,H2, . . . ,HR} where Hr ∈ RI1×I2×I3∀r.
Since each tensor system has unitary rank, it can be decom-
posed as:

Hr = ha,r ◦ hb,r ◦ hc,r (22)

where ha,r ∈ RI1 , hb,r ∈ RI2 and hc,r ∈ RI3 are the
factor vectors of Hr and R denotes the number of sources.
The output of the rth trilinear system is:

Ur(n) = Hrsr(n) = (ha,r ◦ hb,r ◦ hc,r) sr(n) (23)

The operation on equation (23) is a product between a
scalar and a tensor, resulting into a tensorial sequence Ur(n) ∈
RI1×I2×I3 .

Let us consider an additive white, independent-from-signal
and Gaussian noise tensor B ∈ RI1×I2×I3 . The white Gaussian
noise assumption can be formulated as

E[bi1i2i3bj1j2j3 ] = δi1j1 . . . δi3j3 (24)

where ik and jk ∈ {1, . . . , Ik}, k ∈ {1, 2, 3} and δ is
the Kronecker delta. The outputs of the trilinear systems are
combined with the noise tensor B. Then, the received signal
X (n) ∈ RI1×I2×I3 is:

X (n) =
R∑

r=1

sr(n)Hr + B (25)
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Fig. 1. Block diagram for the model.

Observe that now R represents both the number of sources
and the rank of the tensor X , whose elementwise representa-
tion is:

xijk(n) =
R∑

r=0

h(i)
a,rh

(j)
b,rh

(k)
c,r sr(n) + bijk (26)

where bijk is the elementwise representation of B. We desire
to recover the real sequence sr(n), then we will filter the signal
X (n) with a rank-1 trilinear system

W = wa ◦wb ◦wc (27)

where wa ∈ RI1 , wb ∈ RI2 and wc ∈ RI3 are its factor
vectors. It produces an output ŝr (n) ∈ R that is compared to
the desired signal sr(n), generating an estimation error er (n).
The coefficients of the factor vectors of W are tuned according
to an algorithm that minimizes an optimization criterion based
on er (n).

Since W has unitary rank, we define the output of the filter
as the n-mode vector product between the input tensor and the
factor vectors of the filter, resulting into the estimated signal:

ŝr (n) = X (n)×1 wa ×2 wb ×3 wc (28)

We define the cost function J of the algorithm as the MSE
of the estimation error and its parameters are the factor vectors
wa, wb and wc:

J = E[|sr (n)− ŝr (n)|2] (29)
= E[|sr (n)−X (n)×1 wa ×2 wb ×3 wc|2] (30)

In order to obtain the optima filters that minimize the MSE,
we need to solve the following problem:

min
wa,wb,wc

E[|sr (n)−X (n)×1 wa ×2 wb ×3 wc|2] (31)

According to [8], the MSE will attain its minimum value
when the gradient vector ∇J = 0. However, the problem (31)
is not linear, for there is an explicit product of parameters
of the problem. Therefore, we can not apply the classical
optimization techniques. To solve this problem, we will use
the fact that the n-mode vector product can be written in three
equivalent different ways, as we have seen through equations
(19), (20) and (21).

IV. THE TRILINEAR WIENER FILTERS

The equation (28) can be expressed using the equations (19),
(20) and (21), resulting into:

ŝr (n) =
R∑

r=1

(wb ⊗wc)
TX

(r)
(2)(n)wa (32)

=

R∑
r=1

(wc ⊗wa)
TX

(r)
(3)(n)wb (33)

=
R∑

r=1

(wa ⊗wb)
TX

(r)
(1)(n)wc (34)

We can use the equations (32), (33) and (34) to obtain three
linear problems from the problem (31). It can be done by
fixing the two parameters in the Kronecker product. Since we
fix two parameters, we affirm that the following vectors are
constant:

ua(n) =

R∑
r=1

(
X

(r)
(2)

)T

(wb ⊗wc) (35)

ub(n) =
R∑

r=1

(
X

(r)
(3)

)T

(wc ⊗wa) (36)

uc(n) =

R∑
r=1

(
X

(r)
(1)

)T

(wa ⊗wb) (37)

Rewriting the equations (32), (33) and (34) using the equations
(35), (36) and (37), we can obtain three LS estimations:

ŵa = argmin
wa

E[|sr(n)− uT
awa|2] (38)

ŵb = argmin
wb

E[|sr(n)− uT
b wb|2] (39)

ŵc = argmin
wc

E[|sr(n)− uT
c wc|2] (40)

It happens that the equations (38), (39) and (40) are classical
least squares (LS) estimations and its solutions are [8]:

ŵa = R−1
a pa (41)

ŵb = R−1
b pb (42)

ŵc = R−1
c pc (43)

where

Ra = E[ua(n)ua(n)
T ] (44)

Rb = E[ub(n)ub(n)
T ] (45)

Rc = E[uc(n)uc(n)
T ] (46)

are the covariance matrices of the input filters wa, wb, wc

respectively and

pa = E[uasr(n)] (47)
pb = E[ubsr(n)] (48)
pc = E[ucsr(n)] (49)

where pa, pb and pc are the cross correlation vectors
between the input of the filters wa, wb, wc and the desired
signal sr (n).
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V. TRILINEAR ALTERNATING LEAST-SQUARES (TALS)

In order to obtain the optimum filters, we solve, in an
alternate way, each problem using the LS estimates (38), (39)
and (40), fixing all parameters but the argument. This way,
the sequences {ŵk

a}k∈N, {ŵk
b }k∈N e {ŵk

c }k∈N may converge
to its Wiener solution after k TALS steps. The condition for
convergence is that the norm of the vector ∆ is less then a
certain positive value ε. The TALS algorithm is summarized
in the following steps:

1) Initialize ŵa(0), ŵb(0), ŵc(0) and k = 1.
2) ALS loop: while ||∆|| > ε

a) Using ŵb(k),ŵc(k), estimate ŵa(k) = R̂−1
a p̂da

b) Using ŵc(k),ŵa(k), estimate ŵb(k) = R̂−1
b p̂db

c) Using ŵa(k),ŵb(k), estimate ŵc(k) = R̂−1
c p̂dc

d) Calculate ∆ = W(k)−W(k − 1)
e) k = k + 1

where W is given by equation (27). In order to calculate the
covariance matrices and crosscorrelation vector estimates, the
input vector is calculated (equations 35, 36, 37), and then
the covariance matrix (equations 44, 45, 46) and the cross-
correlation vector are calculated (equations 47, 48, 49).

VI. APPLICATIONS

In this section, we expose two applications of the trilinear
Wiener filtering in signal processing problems. The SNR is
defined as

SNR = 10log

(
Es

||B||2F

)
(50)

where Es is the energy of the transmitted signal and ||B||2F is
the Frobenius norm of the noise tensor. The first application
is the recovery of a sinusoid using the model described in
the section III and the TALS algorithm (section V) with ε =
10−4. In the first simulation, each source r transmits a sinusoid
whose frequency is (10.r) Hz. The recovery was done using
a 4× 4× 4 trilinear filter in a multi-source environment of 4
sources. We have recovered the sinusoid of 30 Hz as depicted
in figure (2). In the second simulation, we have analyzed the
MSE vs. SNR performance of three filters, as shown on figure
3. It can be seen that as we increase the order of the filter,
it performs better, since it can process more information in a
single run.

The second application is the transmission of BPSK signals
by R = 4 sources. The equalizer will try to estimate the
transmitted signals using the TALS algorithm for ε = 10−4

and we will analyze the SNR vs. BER performance. Like in
the first application, as we increase the order of the filter,
it performs better in the SNR vs. BER. Through figure 5, we
observe that as we increase the number of transmitting sources,
the interefence increases, then the filter performs worse.

VII. CONCLUSIONS

Multilinear algebra applied to signal processing has been a
promising tool and has allowed the exploration of a new field
of research and applications. In this paper, we managed to mix
the classical Wiener filter with a multilinear structure. Instead
of solving a non-linear problem, we have divided the problem
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Fig. 2. Simulation 1: recovery of a 30 Hz harmonic using a 4 × 4 × 4
trilinear filter.
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Fig. 3. Simulation 2: MSE vs SNR performance for filters of order 5×5×5,
10× 10× 10 and 15× 15× 15 and R = 4 sources.

in three linear problems that were solved using LS estimators.
The trilinear Wiener filter works under the assumption that the
received signal has been corrupted by a trilinear system and
summed up to a trilinear noise. Under these assumptions, we
have shown through simulations that it performs satisfactorily.
As we increase the order of the equalizer, it performs better
and better. But as we increase the rank of the received tensor
signal, the equalizer needs to deal with more interference.
There can be some improvements to the trilinear filter like
increasing the rank of the equalizer filter and deriving an
adaptative algorithm for the model.
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Fig. 4. Simulation 3: BER vs. SNR performance for 4 users.
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Fig. 5. Simulation 4: BER vs. SNR performance for a 10× 10× 10 filter.
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