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Duty Cycle Based Energy Management Tool for
Wireless Sensor Networks
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Abstract— Wireless Sensor Networks are a valuable technology
to support many applications, including smart cities and Internet
of Things. Energy is a key resource for these devices, since
they are usually battery operated. We propose a duty cycle
based energy management tool that enables a better control of
the duty cycle period according to the node energy availability,
thus increasing the network lifetime. We present three different
scenarios with three different configurations to show in what
conditions the tool gets the best results. The tool was programmed
for ContikiOS and the simulations were conducted with Cooja
Simulator.
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I. INTRODUCTION

Wireless Sensor Networks (WSN) have been used to sup-
port several different applications [5], such as detection and
tracking, environmental and industrial monitoring, health mon-
itoring and support. Furthermore, WSN plays an important role
in the Internet of Things (IoT) as well.

Nodes in a WSN are typically battery-powered and resource
constrained (in terms of memory, processing and communica-
tion), and they take part in a multihop ad hoc network [5].
Communication patterns in a WSN include node-to-sink, sink-
to-node and node-to-node. The most common is related to
the goal of a WSN to transmit sensed information from the
environment to a central base station [6].

Each node in a WSN runs four main tasks: sensing, pro-
cessing, receiving and transmitting information. The limited
energy supply is a key challenge faced by WSNs [4]. Due
to the lack of a vast energy source and, in several cases, the
difficulties that carry on changing all the batteries in a WSN,
the reduction of energy consumption is a major challenge [10].

From the tasks mentioned before, the energy consumption
can be grouped into three categories: sensing, processing
and communication. From these three, over the 80% of the
consumption is from the wireless communication module [4].
The consumption of the wireless communication module is
distributed in transmission, reception, idle and sleep. The
largest energy dissipation is on reception state and the smallest
is on sleep. Reception and idle (listening for new data)
consumption are quite equal [19].

TelosB mote energy consumption measurement shows that
the CPU consumption for an instruction at 4 MHz is 2,33
mA, while the Transmitter (TX) + CPU at 4 MHz and 0 dBm
drains 21,4 mA. That is a difference of over 8 times and it

G.A.N. Segura, C.B. Margi, Department of Computer Engineering and
Digital Systems, Universidade de Sdo Paulo, Sdo Paulo, Brazil, E-mails:
gnunez @larc.usp.br, cintia@usp.br.

can increase when the mote turn into a low power mode or
decrease the clock frequency [15]. Notice that these numbers
alone reinforce the need to make a smart use of communication
and the radio module in order to increase the network lifetime.

WSN characteristics impose several constraints and re-
quirements on its protocols, operating systems and programs
running on the devices. One of the main approaches to
decrease the energy consumption is to make use of duty cycles,
thus alternating periods of activity (processing, sensing and
communication) and sleep. The IEEE 802.15.4 [20] standard
is widely used as the Medium Access Layer for Low Power
and Lossy Networks (LLN), and it includes provision for radio
duty cycling in its specification.

Both TinyOS [21] and Contiki [2], two well known oper-
ating systems for WSN nodes, provide mechanisms to imple-
ment radio duty cycling on top of IEEE 802.15.4. TinyOS
has a Low Power Listening mechanism implemented, while
Contiki used X-MAC at first and ContikiMAC nowadays.
ContikiMAC radio duty cycle (RDC) protocol [1] uses a wake
up routine with a very low duty cycle, keeping the radio off as
much as possible. For both cases, duty cycle period is static
and predefined before deployment.

We propose a duty cycle based energy management tool that
enables a better control of the duty cycle period according to
the node energy availability. Our hypothesis is that a dynamic
duty cycle based on the amount of energy available on the
node could increase the network lifetime.

In order to evaluate the proposed duty cycle based energy
management tool, we selected Contiki [2] as the operating
system given its wide use in WSN and IoT platforms. The tool
is built upon ContikiMAC RDC [1], adding a variable control
signal with a lower frequency than the original ContikiMAC
RDC. For the application, the duty cycle depends on the
battery level, which is configured in the code as a parameter.
The tool uses the Energest [3] library to monitor the battery
level.

The remainder of this paper is organized as follows: Sec-
tion II reviews duty cycle related work. Section III presents
the energy management algorithm proposed for the tool. The
evaluation of the algorithm is discussed in Section IV. Finally,
conclusions and future work are presented in Section V.

II. RELATED WORK

Different approaches have been explored to reduce the
energy consumption in WSNs and duty cycle-based algorithms
for energy management can be pointed as one of them. Duty
cycle for energy management has different focuses, but most
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of them are implemented in order to minimize the time spent
on radio-on state of each node from different characteristics
or behaviors of the node.

Zhang et al. [18] derive a relation between the duty cycle
and the distance of the node with the sink to decrease
power consumption. The paper is supported by the fact of
convergecast communication in WSN, where the packet traffic
in nodes near the sink is higher. Authors present experiments
with results of packet delivery ratio, energy consumption and
average latency for two different receiver protocols with duty
cycle adaptation. The experiment was simulated with Opnet.

A similar approach is proposed by Youssef er al. [17],
where it is presented a spatial configuration for the radio
duty cycle. The duty cycle can be updated by two different
mechanisms: the first one is by a broadcast sent by the sink,
which updates the threshold of all nodes; and in the second one
the threshold is updated as a function of the battery capacity
level. To evaluate the results, authors employed ContikiOS,
Cooja Simulator and MSPSIM emulator.

Lopez et al. [12] introduce a duty cycle to enable the radio
for short time and after that turn the node into an idle state.
Authors also propose a technique to minimize electromagnetic
pollution. The experiment was performed using SunSPOT
Sensors.

The work presented by Qui et al. [16] focused on increasing
the lifetime in a WSN for underground pipeline. Authors
present an algorithm to adjust the duty cycle according to the
real time wireless channel condition.

Pereira et al. [14] present an algorithm for deciding which
tasks to run based on the battery energy level. To do this, the
user can define states and the threshold for them. When the
mote boots with full energy capacity, it begins in state zero
and can perform any task, but when the battery level starts
to decrease, the mote change states, limiting the quantity of
tasks that it can run. Their implementation was designed for
TinyOS.

We followed the tool approach [14] adding the dynamic
duty cycle scheme. Unlike previous work, we present different
communication scenarios to show how the duty cycle based
tool behaviour depends on the node role (client, router, server).

III. THE PROPOSED TOOL

As mentioned before, ContikiMAC operation wakes up the
node periodically to check if a neighbor has sent a message.
If that is the case, the radio remains awake to receive it,
and when it is done, the node goes back to the periodically
wake up cycle. Figure 1 presents how ContikiMAC works.
This operation actually has a good power efficiency, but some
applications need as much lifetime as possible.

A. The algorithm

The algorithm proposed controls the ContikiMAC operation
with a dynamic duty cycle low frequency signal (control
signal). This signal can be considered as a flag with two
possible states: high and low. Thus, when the control signal is
high, the ContikiMAC operates normally, and when the control
signal is low, the node turns off the radio and disables the
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Fig. 1: ContikiMAC normal operation
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Fig. 2: ContikiMAC working together with the tool proposed

To change the duty cycle, the tool defines n states and each
state has a threshold, and when the battery level reaches this
threshold, the tool moves to the next state and the duty cycle
changes too. To avoid problems while the message is being
received, the control signal is disabled when the reception
starts, and it is enabled again when the node turns idle again.

With this control, the energy consumption when in idle will
be lower than working just with the ContikiMAC control. This
tool allows to save the energy spent by the node when it
awakes to check activity in the channel. Knowing the behavior
of the network, the duty cycle of the tool could be adjusted
to avoid messages losses and save energy.

B. Contiki implementation

The tool was developed in ContikiOS given all the ad-
vantages in energy consumption that it provides. Figure 3
illustrates the flowchart defined for this implementation.

First, the program sets the parameters. In this part, the
user can define how many states he wants, the threshold of
each one, the fully charged battery energy amount, and the
current state timers dependency. Then the program initializes
four timers. Two of them are to set control signal frequency
and duty cycle, the third one sets the frequency for the
CalculateConsumption function, and the fourth one sets the
frequency for the CalculateState function. These functions are
explained next:

o CalculateConsumption: this function uses the Contiki
Energest library to measure the time spent in four pro-
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Fig. 3: Tool algorithm flowchart

cesses: CPU, Low power mode (LPM), listening and
transmitting. Then, the function calculates the equivalent
energy for those intervals and substracts the total from
the battery level. It is important to previously know the
current consumption of each task, since Energest returns
only the time the task was running. The formula used
to calculate the consumption is shown in equation (1),
where F is the energy consumption, t;,sj is the time the
task spend working, V; is the voltage from the source,
and [,k is the current consumption for the task.

E= tiask * ‘/\s * Itask (1)

CalculateState: this function checks the battery level and
compares it with the next state threshold. If the current
battery level is lower than the next state threshold, the
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state changes to the next one. When the state changes,
the timers period changes too. This dependency may be
set by the user.

o ControlSignal: this function checks whether the mote has
a task in the queue, if so, the mote waits until all the tasks
are finished. When the mote is finally idle, the function
deactivate the ContikiMAC and sends the mote to sleep.
The checking frequency and the sleeping period depends
on the timers explained before.

IV. SIMULATION

The objective of this analysis is to measure the tool per-
formance in different scenarios. The performance is based on
the energy consumption reduction when the code has the tool
working on it. The experiment was performed with Cooja
Simulator [8], a network simulator/node emulator part of in
ContikiOS.

The experiment has three different scenarios and three dif-
ferent configurations for each one. Using Figure 4 as reference,
the three scenarios are described below.

o First scenario: Node number 2 is broadcasting a message
every 60 seconds, and nodes 1 and 3 are listening and
receiving it. Besides the message, node 1 sends his MAC
address to inform the other nodes who is broadcasting.
The simulation employed the rime stack of ContikiOS
for a lightweight communication. It is important to men-
tion that ContikiMAC does not wait for a confirmation
message when broadcasting. To ensure the nodes receive
the message, the server sends the message several times
during the wake-up interval [1].

e Second scenario: Node 1 is a client, node 2 is a router
and node 3 is a server. The client sends a message every
60 seconds, the router receives the message and then
forwards it to the server.

e Third scenario: As the second scenario, node 1 is a
client, node 2 is a router and node 3 is server. The client
sends a message every 60 seconds, the router receives the
message and sends it to the server. In this arrangement
the communication uses the Routing Protocol for LLN
(RPL - RFC 6550).
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Fig. 4: Nodes configuration for simulations

To evaluate the tool performance, all scenarios were tested
in three different configurations: first, with the ContikiMAC
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control off, second running with the ContikiMAC control,
finally with the tool and ContikiMAC control running at the
same time in all nodes.

In the last configuration, the tool was tested for five states
with different duty cycles, without changing the messages
transmission rate. The tool control signal starts with a 100%
duty cycle and it decreases 20% for each next states. For
example, for the state number 2 the duty cycle will be 80%, for
the number 3 will be 60% and so on. For the tests the program
uses the TelosB mote consumption model [15] [13] [7]. Table

manage energy consumption, and when the node uses the
ContikiMAC control. Table II shows the average consumption
per hour for each node for all the scenarios described before.
The consumption in all nodes when ContikiMAC is working
is under 2% compared with the configuration without a MAC
control.

TABLE II: Energy consumption for first and second configu-
ration

I shows a summary of all tests and their configuration. Node [ Configuration 1 [mJ] [ Configuration 2 [mJ]
Scenario 1
1 237870 3270
TABLE I: Summary of simulation tests 2 237910 3580
3 237870 3270
Scenario MAC Routing | Duty cycle Scenario 2
configuration 1 237860 3690
Without B 2 237860 3400
ContikiMAC 3 237860 3260
Scenario 1 | ContikiMAC Static 0,3% Scenario 3
Tool and , 1 237998, 2 3978, 8
ContikiMAC Dynamic 2 238029, 2 3797, 8
Without — 3 237981, 4 3428
ContikiMAC
Scenario 2 | ContikiMAC Static 0,3%
Tool and ) . .
Cont ik iMAC Dynamic Figures 5a, 5b and 5c show the average energy consumption
Without - per hour for all the scenarios when nodes are working just with
. ContikiMAC the ContikiMAC control, and when they have the ContikiMAC
Scenario 3 | ContikiMAC RPL 0,3% X | o
Tool and : and the tool proposed working together. In Figure Sa it is
ContikiMAC Dynamlc possible to see that the tool helps to reduce the energy

The metric used to compare the performance is the average
energy consumption per hour in millijoules. To obtain the
results the tool measures the energy remaining in the battery
of the node 10 times per hour during 10 hours (experiment
duration). The process was repeated in all scenarios. The data
collected during this time allows to get a good approximation
of the node typical consumption, and with the average energy
consumption per hour it is possible to see how the tool affects
the consumption of each node.

A. Results

In the first experiment, scenario 1, 2 and 3 were running
for the first two configurations, to compare the energy con-
sumption performance when the node has not a system to

consumption in all nodes. Working in the State 5, node 2 saves
29,32% of energy per hour, and node 1 and 3 saves 27,21%
The packet delivery ratio (PDR) was not affected by the tool
implementation because all nodes were running with the same
duty cycle on each test. That means that the sleeping routines
coincided and when the server sends the message, the clients
were always awake.

Figure 5b shows that node 1 and 3 save energy when
they reach State 2, and for State 5, both nodes reduce the
consumption in 28,54% and 28,65% respectively. For node 2
(router) the consumption is always higher when using the tool
than the consumption when using just ContikiMAC. Analizing
the time measured for transmitting and listening for the router
node when using ContikiMAC and when using the tool in State
2 (state with maximum consumption), the average transmitting
time per hour increases from 910 ms to 6940 ms, and listening
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time increases from 21090 ms to 26060 ms. On the other hand,
for the other two nodes, listening time decreases from 22690
ms to 18590 ms per hour for the client, and from 20170 ms to
18060 ms for the server. Just like in the Scenario 1, the PDR
was not affected by the tool implementation.

Finally, the results for Scenario 3 are shown in Figure
5c. For this scenario the tool can not reduce the energy
consumption for the client and router. For the server it is
possible to reduce the consumption but until the node reaches
State 3. For this scenario the average transmitting time per
hour increases from 6030 ms to 31990 ms, and listening time
increases from 21090 ms to 26060 ms for the client when the
tool runs over State 3 (state with maximum consumption for
this node). For the router the average transmitting time per
hour increases from 3660 ms to 8620 ms, and listening time
increases from 21920 ms to 24500 ms when the tool runs over
the State 2 (state with maximum consumption for this node).
Moreover, for the server, listening time decreases from 20630
ms to 666,75 ms per hour. The main difference between this
scenario and the two others is that the routing protocol for the
third one is dynamic (RPL) and this implies different control
messages among the nodes [9]. Due to this, sleeping times do
not coincided, causing packet losses and forcing ContikiMAC
to do retransmissions, which increase the transmitting time.
Finally, in the server the transmitting time has not changed
over all states and the PDR is irregular and not over 0,18 for
states 2, 3, 4 and 5.

V. CONCLUSIONS

We have proposed a duty cycle based energy management
tool. The objective of this tool is to reduce the time the radio
module remains on, by adding a low frequency control signal
that changes his duty cycle depending on the battery energy
level.

The results after measuring the energy consumption in three
scenarios with three different configurations show that it is
possible to save energy while using the ContikiMAC and the
tool proposed by adding a duty cycle for the radio module.
On the other hand, this combination can drive an increase in
energy consumption by increasing the time the node remains
transmitting a message. The cause of this problem is that nodes
are sending out messages when the receiver is sleeping because
of the lack of information of their neighbors’ sleeping routines.

As future work, we intend to increase the number of
nodes and to use more complex scenarios. Also we consider
evaluating a mechanism to share the sleeping routines among
the nodes, in order to decrease the over emitting time and
improve the tool performance.
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