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Closed-Form Approximations to the High-order
Statistics of theκ-µ Extreme Fading

Érick Mascagni Ferdinando, Ugo Silva Dias, and Michel Daoud Yacoub

Abstract— This paper presents two closed-form approximati-
ons for the high-order statistics of theκ-µ Extreme fading model.
The rationale for the approximations arose from the observation
of the empirical behavior of the level crossing statistics for data
whose first order statistics closely follow theκ-µ Extreme model.
Field measurements are then used to validate the formulations.

Keywords—κ-µ Extreme distribution, level crossing rate, ave-
rage fade duration, field measurements, validation.

Resumo— Este artigo apresenta duas aproximaç̃oes em
fórmula fechada para as estat́ısticas de ordem superior do modelo
de desvanecimentoκ-µ Extremo. A razão para as aproximaç̃oes
surge da observaç̃ao das estat́ısticas emṕıricas de cruzamento de
nı́vel de dados nas quais as estatı́sticas de primeira ordem seguem
de maneira muito próxima o modeloκ-µ Extreme. Medidas de
campo s̃ao usadas para validar a formulaç̃ao.

Palavras-Chave— distribuiç ão κ-µ Extrema, taxa de cruza-
mento de ńıvel, tempo ḿedio de desvanecimento, medidas de
campo, validaç̃ao.

I. I NTRODUCTION

I N wireless communications, a well investigated propaga-
tion phenomenon that increasingly and continuously raises

the interest of the researchers is the fading. The occurrence of
fading depends on several factors, including the environment
and the propagation frequency. Its harshness ranges from very
mild to extremely severe, and a number of models appear in
the literature that reasonably well describe such a phenome-
non in its various aspects. Among the fading distributions,
Rayleigh, Hoyt, Weibull, Rice, and Nakagami-m, are the best
known. Recently, more general fading models, namelyα-µ [1],
κ-µ [2], and η-µ [2], have been proposed that comprise the
previous ones as special cases and that better fit experimental
field data. Because wireless communications applications have
been progressively diversified, not only outdoor and indoor
environments have experienced their surge, but enclosed sce-
narios too. Enclosed and some indoor environments are cha-
racterized by very severe fading conditions. More specifically,
due to the harsh variation of the received signal, a great deal
of reception points may be found which are well below the
receiver sensitivity. Therefore, even though the signal may not
necessarily be nil, it may be sufficiently low with such an event
occurring a sufficient number of times that the probability
of finding it at such a condition may not be negligible. In
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addition, unlike the traditional environments, where different
combinations of large number of multipath components lead
to known fading channels, enclosed environments may present
only a few radio paths, therefore rendering the utilizationof
the Central Limit Theorem inappropriate. Furthermore, known
and useful propagation mechanisms (e.g., Plane Earth [3])
predict that direct and reflected waves may be combined to
yield nulls at some reception points. In [4], the severe fading
conditions – worse than that predicted by the Rayleigh case
– in enclosed environments was named hyper-Rayleigh fading
[4]–[6]. In [2], an extreme condition of fading was found for
the κ-µ distribution. Such a condition, namelyκ-µ Extreme,
was later explored in [7]. In particular, field measurements
conducted in a large transport helicopter, as reported in [4],
and others collected in a university parking lot with moving
cars and within a sports gymnasium were used to validate the
κ-µ Extreme high-order statistics obtained here.

Currently, theκ-µ Extreme model is limited to its first order
statistics. Exploring high-order statistics is certainlyof interest
to fully characterize the fading channel. It is anticipated,
however, that, specifically for theκ-µ Extreme case, this is
a tough problem whose exact solution is still open. The aim
of this paper is to find approximate expressions for the level
crossing rate (LCR) and for the average fade duration (AFD)
of this new channel.

The remainder of this work is structured as follows. Section
II revisits the physical model and some expressions for theκ-
µ Extreme fading. Section III develops the joint probability
density function of the envelope and its time derivative.
Section IV proposes two approaches to approximate the LCR
and AFD statistics. Section V describes the conditions with
which the field measurements have been conducted. Section
VI compares the proposed approximations and the statistics
obtained from field measurements. Section VII concludes the
paper.

II. T HE κ-µ EXTREME MODEL REVISITED

The κ-µ distribution is a general fading distribution that
can be used to represent the small variation of the fading
signal under LOS conditions. It includes as special cases
important other distributions such as Rice (Nakagami-n) and
Nakagami-m [2]. Therefore, One-Sided Gaussian and Rayleigh
also constitute special cases of it. As its name implies, it is
written in terms of two physical parameters, namelyκ and
µ. The parameterκ > 0 concerns the ratio between the total
power of the dominant components and the total power of the
scattered waves, whereas the parameterµ > 0 is related to the
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multipath clustering. Theκ-µ Extreme distribution was also
originally proposed in [2] and arises as a particular case ofκ-µ
distribution, for which the fading parameters assume extreme
values, i.e.,κ → ∞ (very strong LOS) andµ → 0 (very
few multipaths), denoting very high severe fading conditions.
According to [2], the PDF of theκ-µ Extreme envelope can be
written in terms of the Nakagami-m fading parameter,m. Such
result shows that for a givenm, an infinite number of curves
of κ-µ distribution can be obtained for appropriate values ofκ
andµ, rendering it well suited to field measurements in LOS
conditions with very severe fading scenarios [2], [7].

For a fading signal with envelopeR, with r̂ =
√

E(R2)
being therms value ofR, theκ-µ Extreme PDFfP(ρ) of the
normalized envelopeP = R/r̂ is given as [7]

fP(ρ) =
4mI1(4mρ)

exp[2m(1 + ρ2)]
+ exp(−2m)δ(ρ), (1)

in which Iν(·) is the modified Bessel function of the first kind
and orderν [8, Eq. 9.6.20], andδ(·) is the Dirac delta function.
For convenience, Equation (1) is now rewritten as

fP(ρ) = g(ρ) + exp(−2m)δ(ρ), (2)

in which g(ρ) is the continuous part of the PDF.
The corresponding CDF is given as [7]

FP(ρ) = 1−Q0

(

2
√
m, 2

√
mρ

)

, (3)

in which Q0(·, ·) is the zero-th MarcumQ-function [9].

III. JOINT DISTRIBUTION

For the LCR and AFD calculations, the knowledge of the
joint PDF f

P,Ṗ(ρ, ρ̇) of the normalized envelopeP and its
time derivativeṖ is required. As already mentioned, theκ-
µ Extreme model constitutes a special case of the family
of the κ-µ fading. In [10], Cotton and Scanlon showed that
the envelope and its time derivative are independent random
variables and that the latter is zero-mean Gaussian distributed
with variance given byσ̇2 = 2π2σ2f2, in which f is the
maximum Doppler shift inHz andσ is the standard deviation
of the Gaussian composing theκ-µ fading model. Therefore,
the required joint PDF for theκ-µ Extreme case is given by

f
P,Ṗ(ρ, ρ̇) = fP(ρ)× f

Ṗ
(ρ̇), (4)

where f
Ṗ
(ρ̇) can be written, using the appropriate random

variable transformatioṅP = Ṙ/r̂, as

f
Ṗ
(ρ̇) =

r̂
√
2πσ̇

exp

(

−
r̂2ρ̇2

2σ̇2

)

. (5)

From [2], κ = d2/2µσ2 and r̂2 = 2µσ2 + d2, yielding

σ2 =
r̂2

2µ(1 + κ)
. (6)

By keeping the fading parameterm = V (P)−1 constant, and
κ andµ reaching their extreme values, i.e., infinity and zero,
respectively, thenκµ = 2m,

σ2 =
r̂2

4m
, (7)

σ̇2 =
π2f2r̂2

2m
. (8)

Hence, using (8) in (5) results in

f
Ṗ
(ρ̇) =

√
m

π3/2f
exp

(

−
mρ̇2

π2f2

)

. (9)

IV. LCR AND AFD

The classical way to obtain the LCR is by the Rice formula
given by [11]

NR =

∫

∞

0

ρ̇f
P,Ṗ(ρ, ρ̇)dρ̇. (10)

However, as pointed out by Rice himself, such a formulation
can only be applied in case the joint PDF is continuous
and the integral converges uniformly. The very characteristics
of the κ-µ model shows that the first requirement is not
fulfilled. The κ-µ Extreme envelope has a mixed probability
distribution, i.e., it has both a continuous part and a discrete
part. Therefore, (10) cannot be applied directly. One couldtry
to circumvent this by using the formula of LCR derived for
the κ-µ fading envelope and find its limit when theκ and
µ parameters go to their extremes while keeping the signal
power variance constant. Although, in this case, a formula
can be attained, it does not lead to a physically plausible
solution. Particularly, a trend towards an impulse at the origin
is envisaged, meaning that the signal crosses this level an
infinite number of times. However, at the vicinity of the zero-
plus level the LCR is nil and increases with the increase of
the level. Therefore, a new approach needs be found. Here
we propose approximate formulations for LCR and AFD and
maintain that an exact solution for this problem is a subject
open for investigation. Two approximations are proposed. Such
approximations arise from the observation of the level crossing
statistics for signals for which theκ-µ Extreme distribution
yields a good fit. Such an observation led to the following
inference: above the level below which the signal plunges to
give nulls at the reception, the level crossing statistics fit quite
well with that one calculated using the continuous part of
the distribution; below that value, as expected, such statistics
remains approximately constant because of the sudden drop
of the signal level. Bearing this in mind, the following closed-
form approximations are proposed. All of them attempt to
embed the probability mass at zero level within the continuous
part of the PDF so as to have a final PDF that is no longer
mixed.

A. Approximation A

Approximation A is given as

fP(ρ)cont. =

{

g(ρ0 − ρ) + g(ρ), 0 ≤ ρ ≤ ρ0
g(ρ), ρ > ρ0

, (11)

in which ρ0 must be obtained such that (11) be a PDF such
as

∫ ρ0

0

g(ρ)dρ = exp(−2m), (12)
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which is, indeed, the probability atρ = 0. Equation (12) can
be solved now to yield

Q0

(

2
√
m, 2

√
mρ0

)

= 1− 2 exp(−2m). (13)

Finally, the closed-form LCR for the first proposedκ-µ
Extreme continuous approximation is attained using (4) and
(11) in (10) as

NR(ρ) =

{

0.5f
√

π
m [g(ρ0 − ρ) + g(ρ)] , 0 ≤ ρ ≤ ρ0

0.5f
√

π
mg(ρ), ρ > ρ0

.

(14)

B. Approximation B

Approximation B is given as

fP(ρ)cont. =

{

g(ρ0), 0 ≤ ρ ≤ ρ0
g(ρ), ρ > ρ0

, (15)

so that,
∫

∞

ρ0

g(ρ)dρ+ g(ρ0)ρ0 = 1. (16)

As before,

Q0

(

2
√
m, 2

√
mρ0

)

+ g(ρ0)ρ0 = 1. (17)

Then,

NR(ρ) =

{

0.5f
√

π
mg(ρ0), 0 ≤ ρ ≤ ρ0

0.5f
√

π
mg(ρ), ρ > ρ0

. (18)

Both Equations (13) and (17) must be solved forρ0. To
this end, built-in routines available in classical computing
softwares (e.g.MATHEMATICA) can be used in an efficient
and straightforward manner.

Finally, the AFD is obtained for both Approximations as,

TR(ρ) =
FP(ρ)

NR(ρ)
=

1−Q0 (2
√
m, 2

√
mρ)

NR(ρ)
. (19)

V. FIELD MEASUREMENTS

The aim to obtain field data is to compare the two theoretical
approaches for the high-order statistics of theκ-µ Extreme
distribution against the empirical statistics. To this end, two
scenarios were explored: (i) a parking lot with cars alignedand
moving vehicles; and (ii) a large and nearly empty gymnasium.
In (i), both transmitter and receiver were placed below the
height of the cars and a LOS condition was always in place. In
(ii), the condition was similar to that of (i), except for thecars,
with some people walking by. The receiver equipment setup
consisted of a vertically polarized omnidirectional receiving
antenna, a low noise amplifier, a spectrum analyzer, data
acquisition apparatus, a notebook computer, and a distance
transducer for carrying out the signal at aλ/14 sampling [12]–
[14]. The transmission consisted of a CW tone at 1.8 GHz.
The spectrum analyzer was set to zero span and centered at
the desired frequency, and its video output used as the input
of the data-acquisition and processing equipment. The local
mean was estimated by the moving average method, with
optimum windows length from45λ to 60λ [15], equivalent to
630 and 840 measured envelope samples, respectively. From
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Fig. 1. Illustration of theκ-µ Extreme process (m = 3.53) in a parking lot
for a 80m run.

TABLE I

ESTIMATED PARAMETERS FOR THEAPPROXIMATIONS

Data m
ρ0

(A) (B)
data #1 3.25 0.143 0.130
data #2 3.98 0.116 0.105

the collected data, the long term fading was filtered out, then
the fading parameterm could be estimated.

Fig. 1 illustrates theκ-µ Extreme process, where the se-
vere variation of the received signal with deep fades can be
observed.

VI. RESULTS

In order to compare the curve fitting of the empirical high-
order statistics (from field measurements) and the proposed
approximations of theκ-µ Extreme high-order statistics, the
maximum Doppler shift parameterf has been adjusted to
give the curves the best fit. Figs. 2 to 9 compare approximate
expressions (continuous curve) with empirical curve (circles)
for both Approximations A and B and two fading datas, named
#1 for the parking lot scenario, and#2 for the gymnasium
scenario. It is noted that the two proposed approximations
yield almost the same curve shapes, the difference between
them appearing at very low levels, i.e. nearρ = 0, sinceρ0
typically assumes relatively low values, as can be seen in Table
I. Another point to be observed is that, in practice, the level
crossing rate at thresholdρ = 0 does not make sense. However,
the κ-µ Extreme distribution predicts a non-nil probability
of signals nulls, such that the LCR at the origin may be
interpreted as the arriving or departure rate of the signal at
the threshold zero. And the AFD relates to the time the signal
remains at that level. Table II shows the values found for the
empirical and theoretical high-order statistics atρ = 0.

In a general, both approximations yield an excellent fit as
compared to the empirical high-order statistics, including their
values atρ = 0.
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Fig. 2. Comparison of LCR with respect to data#1 and approach A (m =

3.25, f = 7.45 Hz).
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Fig. 3. Comparison of AFD with respect to data#1 and approach A (m =

3.25, f = 7.45 Hz).
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Fig. 4. Comparison of LCR with respect to data#2 and approach A (m =

3.98, f = 7.25 Hz).
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Fig. 5. Comparison of AFD with respect to data#2 and approach A (m =

3.98, f = 7.25 Hz).
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Fig. 6. Comparison of LCR with respect to data#1 and approach B (m =

3.25, f = 7.45 Hz).
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Fig. 7. Comparison of AFD with respect to data#1 and approach B (m =

3.25, f = 7.45 Hz).
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Fig. 8. Comparison of LCR with respect to data#2 and approach B (m =

3.98, f = 7.25 Hz).
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Fig. 9. Comparison of AFD with respect to data#2 and approach B (m =

3.98, f = 7.25 Hz).

TABLE II

EMPIRICAL AND THEORETICAL LCR AND AFD VALUES AT THE ORIGIN

Data
LCR at ρ = 0 AFD at ρ = 0

Emp. (A) (B) Emp. (A) (B)
data #1 0.078 0.087 0.076 0.031 0.017 0.019
data #2 0.024 0.022 0.019 0.011 0.015 0.018

VII. C ONCLUSIONS

This paper presented two closed-form approximations for
the high-order statistics of theκ-µ Extreme distribution, thus
circumventing the limitation of the Rice formula, which ap-
plies only to continuous processes. The approximations were
compared with empirical curves from some field measure-
ments and showed excellent adherence.

Future works include finding new approximations as well
as defining means to arrive at the exact solution.
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