
XXXIV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2016, AUGUST 30 TO SEPTEMBER 02, SANTARÉM, PA
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Abstract— Considering a wireless sensor network in which
each node is capable of sensing, computing and communicating
with each other, avoiding the need of a fusion center, several
distributed algorithms have been proposed in the last years,
searching to solve a parameter estimation problem. The large
majority of such methods are supervised, needing a training
sequence for adaptation. In this paper we propose a blind
diffusion algorithm based on the constant modulus algorithm
(CMA). We show that the network cooperation enhances the
performance of the method when compared to a non-cooperative
scheme, and that it exhibits additional robustness by avoiding
local minima convergence.

Keywords— Wireless Sensor Network, Constant Modulus Al-
gorithm, Diffusion Algorithms

I. INTRODUCTION

In the last decade, important advances have been made in
what concerns signal processing by wireless sensor networks.
The possibility of having several sensors working together,
each capable of sensing, computing and communicating, en-
ables the improvement of the estimation of unknown system
parameters, tracking devices, equalization, among others. The
type of network in which nodes cooperate with each other,
avoiding the need of a central fusion center, will possibly form
the backbone of future generations of data communications,
control and sensor networks [1]. Such architecture has shown
to be more efficient in terms of energy and communication
saving, without mentioning its robustness to nodes failures.

Several methods have been developed for parameter esti-
mation in such context [2]–[5]. The techniques are named
diffusion or distributed algorithms since each node computes
its own local estimation, while exchanging information with
its neighbors. For parameter estimation, all methods are su-
pervised since a training sequence is necessary for adaptation.
However, the availability of such sequence is not always
possible, leading to the necessity of developing and using blind
techniques.

Interestingly, to the knowledge of the authors, only the
work presented in [1] approaches such problem, developing
a blind distributed constant modulus based technique for the
adaptation of the nodes local estimates. However, the work
done in [1] restrains itself to a very particular network:
a ring topology, with a single-hop Hamiltonian cycle. In
order to generalize such method, so that it can be used and
applied to any network topology, in this paper we propose
a diffusion constant modulus algorithm (D-CMA). We show,
through simulations, that there is a significant performance
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gain when compared to a non-cooperative scheme. We also
briefly analyze the algorithms convergence with respect to
the filter initialization, keeping in mind that the constant
modulus criterion presents local minima [6]. In addition, the
combination matrix, which represents the network topology
in the algorithms adaptation, plays an important role in the
methods performance, differently from what is observed on
supervised methods [2], [3].

This paper is organized as follows. Section II presents the
network model used in this work and the existing rules to
set the combination matrix. The proposed Diffusion Constant
Modulus Algorithm (D-CMA) is explained in section III. Such
section also revisits the method proposed in [1]. Section IV
discusses the simulation results, and section V concludes this
paper.

II. NETWORK MODEL AND PROBLEM FORMULATION

In this work, we will consider a network in which nodes are
able to exchange information with one another, following the
model used in [2], [3]. Figure 1 shows an example of topology.
Each sensor measures the outcome of an unknown system. The
system is modeled as linear, possibly time-varying filter. The
measurement is made in the presence of a phase shift and
additive noise that are independent for each sensor [1]:

uk(n) =
L∑

i=0

ejβkhi(n)s(n− i) + νk(n) (1)

where uk(n) is the measurement of the kth-node, βk is the
phase shift for the kth-node, hi(n) is the filter finite impulse
response coefficient, with i = 0, ..., L, s(n) is the transmitted
signal and νk(n) is the noise for the kth-node. The phase shift
βk is independent for each node k, being modeled as a random
variable, uniformly distributed between [0, 2π]. The noise νk
is a circular complex white Gaussian noise, with zero mean
and variance one.

The objective is to equalize the unknown system, recovering
the transmitted sequence s(n). Since we consider a distributed
adaptive estimation algorithm, in addition to the measure
uk(n), each node in the network has access to the estimates
generated by its neighbors. We will define the neighborhood
of a node k as being the set Nk of all other l-nodes to which k
is connected, including itself. Thus, the aggregate estimate ϕk
is obtained by the fusion of the local estimates of the kth-node
neighbors:

ϕk(n) =
∑
l∈Nk

ck,lψl(n) (2)
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Fig. 1. Network with 20 nodes

where ϕk is the aggregate estimate of node k, ψl is the local
estimate of node l and ck,l are the coefficients that enables the
fusion of the local estimates.

The coefficients ck,l are elements of the combination matrix
C [2], [3]. This matrix represents the network topology. As
a basic rule, that must be always satisfied, the coefficients
related to the neighbors of a node k must always add to one,
i.e.

∑
l∈Nk

ck,l = 1 for k = 1, .., N , where N is the number
of nodes in the network.

Several rules are available to define the matrix C. A few
possibilities are briefly described in the sequel:

• Metropolis rule (MR) [2], [3], [7]:

ckl =


1

max{nk,nl} , l ∈ Nk

1−
∑

l∈Nk,l ̸=k ckl, k = l

0, otherwise

(3)

where nk and nl denote the degree of nodes k and l, i.e.,
nk = |Nk|.

• Laplacian rule (LR) [2]:

C = IN − κL (4)

where IN is the identity matrix of order N , κ = 1/nmax

with nmax being the largest degree of a node in the
network and L = D −A with D = diag{n1, n2, ..., nN}
and A is the N ×N adjacent matrix formed as:

[A]kl =

{
1, if k and l are linked
0, otherwise (5)

• Nearest Neighbor rule (NN) [2]:

ckl =

{ 1
|Nk| , l ∈ Nk

0, otherwise
(6)

• Maximum Degree rule (MD) [8]:

ckl =


1
N , l ∈ Nk,
1−

∑
l∈Nk,l ̸=k ckl, k = l

0, otherwise.
(7)

• Relative Degree rule (RD) [8]:

ckl =

{
nl∑

m∈Nk
nm
, l ∈ Nk,

0, otherwise.
(8)

Other recent methods include adaptive combiners searching
for the optimization of the network adaptation [4], [5]. Such
techniques were proposed in a supervised context. In this
work, we will consider a static scenario and thus we will
restrain ourselves to the rules presented above, keeping the
matrix C constant during adaptation.

III. DIFFUSION CONSTANT MODULUS ALGORITHM

To develop a constant modulus algorithm that works in
diffusion mode, enabling and exploiting the exchange of
information between different nodes, we will follow the basic
idea used in [2] where the authors propose a diffusion least-
mean squares algorithm, that is, the idea of using not only the
local estimate of each node but also an aggregate estimate in
which the information of the nodes neighbors are also taken
into account (see (2)). It is important however to emphasize
that we consider here a completely different scenario, since we
want to achieve the blind adaptation of the nodes filters with
the objective of equalizing an unknown system, recovering the
desired signal s(n).

A. The proposed algorithm

The proposed diffusion constant modulus algorithm (D-
CMA) can be stated as follows: each node has an equalizer
with output given by:

yk(n) = uk(n)ϕ
H
k (n) (9)

where yk is the output of the equalizer at the node k, uk(n) =
[uk(n) uk(n − 1) ... uk(n −M + 1)] and ϕk is the vector
containing the M coefficients of the aggregate estimate. The
superscript H denotes Hermitian transpose. Thus, the equalizer
output takes into account not only the local estimate, but also
the exchange of information with the nodes neighbors.

The constant modulus criterion searches to minimize the
following cost function [9]:

JCM = E
(
|yk(n)|2 −R2

)2
(10)

in which R2 = E|s(n)|4
E|s(n)|2 , and E{.} is the expectation operator.

The gradient-based algorithm for the kth-node can thus be
stated as:

ψk(n+ 1) = ϕk(n)− µuH
k (n)yk(n)(|yk(n)|2 −R2) (11)

where µ is the stepsize.
As we will see in section IV, such an algorithm is more

robust, converges faster and attains lower error levels than a
non-cooperative scheme.

B. Revisiting the literature

In [1], the authors propose the use of a distributed constant
modulus algorithm in a wireless sensor network, in a very
particular case: the authors consider a ring network topology
with a single-hop Hamiltonian cycle. Therefore, the filter
coefficients of the first node are initialized, and the adaptation
at each node k only considers the information coming from
the precedent node k − 1.
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Comparing to the D-CMA proposed in section III-A, the
algorithm proposed by [1] does not have an aggregate estimate,
since the topology is fixed, and the output yk is obtained using
the local estimate at node k. Since adaptation is achieved
through an incremental procedure, we will name such algo-
rithm as I-CMA. In section IV, we compare the performance of
I-CMA and D-CMA, reducing D-CMA to the unique context
in which I-CMA may be applied.

IV. SIMULATION RESULTS

In the following simulations, we considered the transmission
of a QPSK (Quadrature Phase Shift Keying) modulated signal,
through a channel given by h = [0.3482 − 0.8704 0.3482].
The signal received by the nodes follow (1). We considered
M = 5 and a center-spike initialization [6]. The performance
of the network was measured through the mean residual
Intersymbolic Interference (ISI) given by:

ISI =
1

N

N∑
k=1

∑
i |αk|2 − |αk|2max

|αk|2max

(12)

where αk is the combined channel-equalizer (given by the
local estimates, ψk) response for each node k. Figures show
the mean of 100 Monte Carlo simulations.

Firstly, we compare the performances of the proposed D-
CMA (11) with the I-CMA [1], restraining the system model to
a ring network with a single-hop Hamiltonian cycle, since the
later only works in such scenario, with N = 5. It is interesting
to note that the two algorithms work differently: D-CMA takes
into account not only the information of the preceding node,
as does the I-CMA, but also the information of the current
node, due to the definition of the neighborhood Nk. Figure
2 shows the results obtained, showing that, for this specific
scenario, the performance of both algorithms is very similar.
The stepsizes were µ = 0.007 for D-CMA and µ = 0.001 for
I-CMA, and a SNR = 10 dB was considered.
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Fig. 2. Comparison between I-CMA and D-CMA on a 5 node ring network

In the sequel, we considered an arbitrary 20 nodes network.
Since I-CMA may not be applied to this context, only D-CMA
was simulated. Our objective here is to analyze the networks
performance when compared to a non-cooperation situation,
and also to investigate if the combination matrix C, defined
in section II, interferes on the performance of the algorithm.
Figure 1 shows the network topology and figure 3 shows the

performance of the network for a SNR = 20 dB. As expected,
the cooperation between nodes results in a faster convergence
when compared to a non-cooperative scheme. Stepsizes were
adjusted so that the algorithms would converge to the same
residual ISI. For D-CMA, µ = 0.01 and C uses the LR.
For CMA with no cooperation, µ = 0.03. It is important
to note that here all combination matrix C led to the same
performance.

Figure 4 shows the performance when SNR = 10dB.
Here we can see how C interferes on the algorithm. Clearly,
LR led to a better performance, followed by MR and RD.
Further analysis in this sense are necessary to explain such a
difference, keeping in mind that the CMA theoretical analysis
is not a simple task since it involves higher-order statistics
[6]. Stepsizes used here were µ = 0.002 for CMA with
no cooperation, µ = 0.003 for RD, MR, NN and MD, and
µ = 0.007 for LR, which showed to be more stable and robust
to noise than the others.
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Fig. 3. D-CMA on a 20 nodes network, arbitrary topology, SNR = 20dB
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Fig. 4. D-CMA on a 20 nodes network, arbitrary topology, SNR = 10dB

Finally, an interesting aspect that arises is with respect to
the equalizer initialization. The constant modulus criterion is
known for having local solutions that are not capable of re-
ducing ISI, which makes initialization an important step in the
process of adaptation [6]. Here, however, we are considering
a network. If certain nodes have a bad initialization, will the
network be able to overcome such drawback and converge to
a good solution? To analyze the convergence of the algorithm,
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Fig. 5. Network with 4 nodes

ψfinal ψfinal ψfinal

Scenario MR=LR=MD NN RD
1

Initialization [0.02 0.74] [0.02 0.74] [0.02 0.74]
ψ1 = [1 0]

ψ2,3,4 = [0 0.8]
2

Initialization [0.02 0.74] [0.94 − 0.35] [0.94 − 0.35]
ψ1,3 = [1 0]
ψ2,4 = [0 0.8]

TABLE I
D-CMA PERFORMANCE FOR DIFFERENT INITIALIZATIONS

we considered a simple two tap channel h = [1 0.4], no noise.
Using an equalizer with two taps, ψ = [0.95 − 0.32] is the
CMA global solution and ψ = [0.04 0.75] is the local minima,
together with their counterparts [10]. We then considered the
network shown in figure 5. In the first scenario, we initialized
node 1 with ψ1 = [1 0], i.e., near the global solution, and all
other nodes were initialized with ψk = [0 0.8], for k = 2, 3, 4,
i.e., near the local solution. On the second scenario, node 1
and a second node, chosen arbitrarily, were initialized near the
best solution while the other two were initialized near the local
minima. Stepsize must be small to assure that the algorithm
will not escape from local minima. We considered µ = 0.01
for all cases. The results are shown in table 1.

We can see that, having only the central node with a
good initialization (first scenario) is not sufficient to achieve
the global minima after convergence. On the other hand, if
one more node is well initialized (second scenario), a good
performance can be achieved, specially using the NN or RD
rules. In the given example, second scenario, we chose node
3 to initialize near the global minimum, but the performance
will be exactly the same if we choose nodes 2 or 4.

V. CONCLUSION

In this paper we proposed a Diffusion Constant Modulus Al-
gorithm (D-CMA) to be applied in a wireless sensor network
of arbitrary topology. We showed that the network performs
better with such algorithm than in a non-cooperative scheme.
We also showed that, differently from what is observed in
similar supervised techniques, D-CMA is sensitive to the
rule used to define de algorithms combination matrix, even
differing from a local convergence to a global convergence
only by the change of such matrix. Further analysis must be
undertaken to understand such behavior in more detail.
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