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Abstract— From the classical blind CM criterion, we derive a
MSE-based polynomial formulation that lead to two contribu-
tions: a lower bound of the CM criterion, which works as an
equalizability index, and an initialization heuristic for the CMA.
The results indicate the validity of the index as an analytical tool
and as a practical performance assessment metric in the context
of inverse problems. For the heuristic, the results reveal that it is
capable of outperforming the classical center-spike method and
a random initialization approach.
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I. INTRODUCTION

The problem of blind equalization holds a prominent place

in modern adaptive signal processing theory. This is in part

due to the theoretical relevance of this problem as general

formulation of unsupervised inverse tasks in the time domain,

but is also related, to a great extent, to the myriad of impor-

tant applications thereof: echo cancelation, geophysical data

mining and digital communications [1].

One of the most used strategies to deal with this problem is

that based on the constant modulus (CM) criterion [2], which,

along with its associated algorithm, the CMA, was an object

of intense study for the last three decades [3][4]. A key result

derived from these analyses is the strong connection with the

Shavi-Weinstein criterion [3] - an important point of contact,

both in terms of providing a unified view of blind approaches

and of establishing links with blind source separation (BSS)

theory. Other interesting connections were established with

the Wiener criterion [1], a supervised formulation based on

a mean-squared error (MSE) measure. They reveal, in simple

terms, that there is a proximity between good-quality CM

solutions and Wiener solutions (considering different delays

for the reference or desired signal). However, there remain

central theoretical and practical issues associated with the

CM formulation that require significant further clarification,

which is, in a certain sense, a consequence of the complexity

of the CM cost function. In light of this, in this work, we

propose a polynomial formulation of the CM cost function

in terms of an MSE metric, which will gives rise to two

main contributions: first, the derivation of a lower bound

for the CM cost function, which will work as an attainable
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performance measure for channel deconvolution or, in other

words, as a blind equalizability index; second, the proposal

of a novel initialization heuristic capable of improving the

global convergence performance of the CMA in comparison,

for instance, with the standard center-spike initialization.

The first contribution is associated to the concept of at-

tainable performance or equalizability, given a channel and

an equalizer order. This measure can be obtained in an unsu-

pervised fashion and yields a value that, to a certain extent,

follows the attainable residual MSE level for the supervised

case. It proves itself to be a potential analytical tool / practical

performance assessment index in the context of equalization

and linear inverse problems in a broad sense.

The second contribution is related to convergence aspects of

CMA: it is well-known that an inadequate initialization of the

filter coefficients can lead to local convergence [4][5]. In light

of this, based on the solution of the polynomial formulation of

the CM cost function, the novel initialization heuristic seeks to

avoid as much as possible these situations and provide initial

conditions more promising than those obtained using canonical

approaches.

This work is organized as follows. In Section II we derive

a polynomial formulation of the CM criterion, following

constrained and unconstrained approach. Based on the latter

strategy, the CM lower bound, which works as a blind equaliz-

ability index, is presented in Section III. A number of simula-

tion results are shown in Section IV to illustrate the relevance

of the proposal. In Section V, the novel initialization heuristic

is introduced and, next, tested with the aid of simulations in

Section VI. Finally, the conclusions are summarized in Section

VII.

II. POLYNOMIAL FORMULATION OF THE CM CRITERION

The main idea underlying the classical CM criterion resides

in the penalization of deviations from a quadratic term with

respect to the equalizer output y(n) around a fixed constant

value R2. It can be expressed in terms of the minimization of

the following cost function:

JCM (w) = E
[

(

|y(n)|2 −R2

)2
]

, (1)

where R2 = E
[

|s(n)|4
]

/E
[

|s(n)|2
]

, E[·] denotes statistical

expectation, w is the parameter vector of a finite impulse

response (FIR) equalizer with N coefficients, s(n) the trans-

mitted signal and y(n) is the equalizer output signal. More

specifically, the equalizer output can be defined as y(n) =
wHx(n), in which x(n) = [x(n), x(n−1), . . . , x(n−N+1)]
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is the equalizer input vector and (·)H denotes Hermitian

transposition.

From an analytical standpoint, it would be theoretically

interesting if one could express the CM cost function as

an MSE-like expression, i.e., in accordance with the Wiener

criterion [1]:

JWiener(w) = E
[

|s(n−d)− y(n)|
2
]

, (2)

where d is a given delay. Indeed, this will be achieved if a

polynomial formulation of (1) is made explicit.

A. The Constrained Case

Supposing that the transmitted signal is composed by unit-

norm samples, it is possible to interpret Eq. (1) as a MSE

function - in the form of Eq. (2) - between a desired signal

s(n) = R2 = 1 and the output υc(n) = |y(n)|2 of a

polynomial Volterra filter [6], here denoted as θc, assuming

the form:

JCM (w) = E
[

(υc(n)− 1)
2
]

. (3)

This polynomial filter θc presents a quadratic nature by

definition, and its parameters are subject to the constraint

imposed by the values of w - the subscript ‘c’ refers to this

constraint. For a better understanding, we will present, as a

simple example, the case of a two-tap equalizer (which can be

straightforwardly extended to the N -tap case) and real-valued

signals and parameters. Taking υc(n) = y2(n) and expanding

its terms, we have, using vector notation, the following:

υc(n) =
[

w2

0
2w0w1 w2

1

]





x2(n)
x(n)x(n− 1)
x2(n− 1)





=θT
c ξ(n),

(4)

where θc is the polynomial filter parameter vector - which

depends on w - and ξ(n) is the input vector in the Volterra

domain.

It is also possible to extend the polynomial formulation of

the CM criterion to include complex signals if their intrinsic

properties are considered. The cost function defined in (3) will

remain the same, but the expansion of the polynomial filter

output υc(n) slightly differs from the case in (4), since now we

consider |y(n)|2 = y(n)y∗(n), where the ∗ denotes complex

conjugation, instead of y2(n) in the real case. For example, if

we take a two-tap complex equalizer, υc(n) will also depend

on θc and ξ(n), although now they will be complex and

defined as:

θc =
[

|w0|
2 w∗

0
w1 w0w

∗

1
|w1|

2
]T

;

ξ(n) =









|x(n)|2

x(n)x∗(n−1)
x∗(n)x(n−1)
|x(n−1)|2









; θc, ξ(n) ∈ C.
(5)

It is important to note that the complex-valued condition

increases the dimension of θc and ξ(n), and the constraints

for θc in respect to w are more restrictive.

As we have shown, the Eq. (3) defines a polynomial

formulation of the CM criterion for both real- and complex-

valued signals. It is possible to go further by admitting a

greater freedom of choice of the parameters of the polynomial

filter θc.

B. The Unconstrained Case

An interesting approach can be obtained if we relax the

constraint on the values of w shown in θc and make the

polynomial filter parameters completely “free” - they will be

hereinafter denoted simply as θ. Thus, if we turn our atten-

tion again to the two-tap real- and complex-valued equalizer

example, the polynomial filter θ in each case will be defined,

respectively, as:

θ =
[

θ0 θ1 θ2
]

∈ R or

θ =
[

θ0 θ1 θ2 θ3
]

∈ C.
(6)

Independently of the situation, be it real- or complex-valued,

the output of the unconstrained polynomial filter, defined as

υ(n) = θT ξ(n), can also give rise to an MSE-based cost

function. In addition to that, if we consider the autocorrelation

matrix Rξ and the cross-correlation vector pξ for d(n) = 1
in the Volterra domain to be defined as

Rξ = E
[

ξ(n)ξH(n)
]

; pξ = E [ξ(n)] , (7)

it is possible to express the unconstrained cost function for the

polynomial formulation as follows:

JLB(θ) =E
[

(υ(n)− 1)
2
]

=1− θH
pξ − pH

ξ θ + θH
Rξθ.

(8)

This new cost JLB(θ), differently from the constrained poly-

nomial cost (3), does not strictly follow the behavior of the CM

cost (1). This new expression, nonetheless, is able to provide

interesting information regarding the equalization task at hand,

as will be seen in the next section.

III. THE CM LOWER BOUND - A BLIND EQUALIZABILITY

INDEX

The unconstrained cost JLB(θ) allows the polynomial filter

θ to assume any set of coefficients. By doing this, it is

expected that the minimization of JLB(θ) lead to a MSE value

lower than or equal to that attained in the constrained case

(3). This means that the unconstrained formulation originates

a lower bound to the CM cost function. Interestingly, the

unconstrained case directly corresponds to a nonlinear - since

ξ(n) is in Volterra domain - Wiener filtering problem, but the

dependence with respect to free parameters θ remains linear.

This allows us to obtain a closed-form solution that minimizes

JLB(θ) as a consequence of the Wiener-Hopf equations [1]:

θo = R−1

ξ pξ. (9)

It is important to notice that the solution for θo depends on

second-order statistics in pξ and fourth-order statistics in Rξ

with respect to the received signal x(n). The minimum MSE

value can be straightforwardly obtained from Wiener filtering

theory [1]:

JLB(θo) = 1− pH
ξ R−1

ξ pξ, (10)
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which constitutes the CM cost lower bound, since

JCM (w) ≥ JLB(θo). (11)

At this point, a few remarks should be made concerning

this CM lower bound JLB(θo). Firstly, as shown in Eq. (10),

this value can be obtained in a totally unsupervised fashion,

since it depends only on the statistics that form Rξ and pξ.

Secondly, as the simulations will show, the value JLB(θo) is a

measure that can be employed as an unsupervised achievable

performance evaluation metric. Therefore, ideally, by using

(10), it is possible to extract from the statistical structure of

the input signal a value that indicates how “equalizable” is a

given channel for a certain equalizer order.

Furthermore, as there tends to exist a certain proximity be-

tween the good CM solutions and the best (supervised) Wiener

solutions (2), it is possible to ask whether there is a close

relationship between the CM lower bound value JLB(θo)
and the attainable MSE performance of the supervised case,

considering, which is quite interesting, the most suitable delay

d. Hence, aside from being a theoretical indicative of the

attainable performance under the CM criterion, the lower

bound, as the simulations indicate, also is related to the

attainable MSE level - this evokes again the notion of a blind

equalizability index.

This discussion, which is speculative in some points, will

become clearer with the aid of empirical analyses - this is the

next step of this work.

IV. SIMULATION RESULTS FOR THE CM LOWER BOUND

In order to verify the soundness of the CM lower bound

JLB(θo) in itself and as a blind equalizability index, it is

necessary to compare its performance to those of the global

optimal CM and (supervised) Wiener solutions (taking into

account the equalization delay). For simulation effects, we

estimate the minimum value of the CM cost function by

initializing the CMA (µ = 0.0008) at the best Wiener solution

(in terms of the equalization delay), which can be considered

a sufficiently reliable strategy to obtain global convergence.

Moreover, to test the hypotheses raised in the previous

sections, the connections between the CM lower bound and

the minimum CM and Wiener costs must hold for a variety

of channel models. We consider, therefore, for real-valued

systems, three scenarios: a first-, a second- and a third-

order channel. For the complex-case, we analyze a first-order

channel.

Aiming to cover a wide range of channels, we first consider

a scenario with real-valued parameters in which the channel

transfer function is given by H(z) = 1+αz−1 (normalized to

have unit norm), where α varies from 0 to 3, and the equalizer

is a two-tap filter. The source is composed of 50000 indepen-

dent and identically distributed (i.i.d.) BPSK samples and there

is no additive noise. The obtained values for JLB(θo) and the

minimum value of the CM and Wiener costs are illustrated

in Fig. 1. The figure reveals that JLB(θo) is, as expected,

a lower bound for the CM cost function. Also, it should be

noticed that the CM lower bound tends to follow the general

shape of both the CM and Wiener costs, i.e., it assumes lower
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Fig. 1. Minimum cost values and CM lower bound for different 2-tap channel.

values for channels that are relatively “simpler” to equalize

(or, in other words, channels that can lead to lower values of

optimal MSE cost). On the other hand, it consistently achieves

higher values for channels that are “harder” to equalize, which

gives support to the aforementioned practical notion of its use

as a blind equalizability index.

The analysis is now extended to a case in which the channel

is a second-order system with transfer function H(z) =
1+αz−1+βz−2 (with subsequent unit-power normalization),

where α and β vary from 0 to 2, and a three-tap equalizer is

employed. The results are shown in Fig. 2. As in the previous
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Fig. 2. Minimum cost values and CM lower bound for different 3-tap channel.

case, the CM lower bound held its validity and was shown to

be consistent with the general pattern of the minimum MSE.

As a last test for real-valued scenarios, 500 third-order

channels with coefficients randomly generated according to

a uniform distribution from −1 to +1 and an equalizer with

same order are considered. For each channel, the values for

JLB(θo) and of the minimum CM and Wiener costs were

obtained. In the histogram presented in Fig. 3, we show the

frequency of the difference values between (i) the CM cost
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Fig. 3. Differences histogram for randomly generated 4-tap channel.

and JLB(θo) and (ii) the Wiener cost and JLB(θo). It is

clear, from these differences, that the CM lower bound is again

related in a consistent way to the minimum CM and Wiener

costs. Notice, in particular, the proximity with respect to the

supervised formulation, which is indicative of the potential

relevance of the lower bound and an indicative of the potential

of channel equalization.

For complex-valued systems and parameters, we concentrate

our analysis on a complex channel of the type H(z) = 1 +
(α+ jβ) z−1, with α and β varying from 0 to 2, an i.i.d.

4-QAM modulated source of 50000 samples and a two-tap

complex equalizer. Fig. 4 shows the obtained cost values and

the CM lower bound for this scenario. It is possible to say
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that, since the complex-valued case admits a larger number of

coefficients for θ, the solution for JLB(θ) presents a higher

degree of freedom in relation to the real-valued case. Hence,

as we can see in Fig. 4, the lower bound JLB(θo) attains lower

values. Even so, the idea of the blind equalizability index is

still feasible.

The simulations in both real- and complex-valued scenarios

indicate that the blind equalizability index is consistent, which

can be interesting for practical applications in digital commu-

nication and blind source separation (e.g. in underdetermined

cases dealt with via kurtosis-based methods).

V. INITIALIZATION HEURISTIC

From a blind equalization standpoint, it is well-known that

a suitable initialization for the CMA can potentially lead to the

global minima of the CMA, being that, however, a difficult task

in practice. As seen in Section IV, since the CM lower bound

establishes connections with the performance of optimal CM

filters, it is not unreasonable to expect that there be some sort

of relationship between the unconstrained polynomial filter

solution θo and the CM global minima. Therefore, if it is

possible to have access to these shared characteristics, e.g.,

through a mapping between θo and w, it should be possible

to increase the CM global convergence rate.

Considering only the real-valued case, by comparing the

constrained and unconstrained polynomial filter coefficients,

θ and θc, respectively, it is possible to see that, as in the two-

tap filter example given by Eqs. (6) and (4), there will be a

correspondence between (i) θ0 and w2

0
, (ii) θ1 and 2w0w1, and

(iii) θ2 and w2

1
. There are, hence, some terms of θ associated

to quadratic terms of w, as cases (i) and (iii), which we will

denote as θ[w2

l ] for l = 0, . . . , N , and other θ terms related

to cross-product of the filter coefficients w, like in (ii), which

will be denoted as θ[wlwm] for l,m = 0, . . . , N . If these

considered terms from θc and θ remain close, they can be

employed to provide an estimate of the CM optimal solution,

which can be used as an initial condition to the CMA.

In order to better explore the relationship between θc and

θ, we propose an initialization heuristic to obtain the initial

coefficients w for CMA, which can be expressed by the

following algorithm:

Algorithm 1 Initialization Heuristic

wl ←
√

maxl |θ[w2

l ]|
for m from 0 to N , m 6= l do

wm ← θ[wlwm]/ (2wl)
end for

Basically, the algorithm searches for the largest magnitude

of θ[w2

l ] to determine the associated filter coefficient wl.

After that, the remaining coefficients of w are obtained from

the related cross-product θ[wlwm]. It is important to remark

that the sign of the largest magnitude reference wl is always

assumed to be positive, which implies no loss of generality in

view of the sign ambiguity inherent to Bussgang algorithms

[1].

The complex-valued case presents a more intricate relation-

ship between θc and θ and will not be considered in this work,

being a perspective for future research.

VI. SIMULATION RESULTS FOR THE INITIALIZATION

HEURISTIC

In order to test the initialization heuristic, we consider three

different scenarios: channels of first-, second- and fifth-orders.
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The equalizer is always assumed to have the same order of

the channel. In all cases, the proposed heuristic is compared

to two other methods: the standard center-spike initialization

[5] and a random initialization based on a uniform coefficient

distribution between −1 and +1. The performance of all

methods is analyzed using the outcome of the CMA, with

µ = 0.0008, for each initialization, after 30000 iterations.

Global convergence is assumed to have occurred when the

distance between the taps obtained via CMA and the optimal

taps - assumed to be the outcome of the CMA initialized at the

best Wiener solution - is smaller than 0.1 (taking into account

the sign ambiguity).

In the first case, the channel has the transfer function

H(z) = 1 + αz−1 (subsequently normalized), where α
varies from 0 to 2 in steps of 0.041. Tab. I displays the

global convergence rates for all three methods and also their

associated average CM cost. From the results, the heuristic

TABLE I

GLOBAL CONVERGENCE RATE AND AVERAGE CM COST FOR FIRST-ORDER

CHANNELS.

Init. Global Conv. Rate Average CM Cost

Heuristic 100% 0.2540

Center-Spike 46.94% 0.3238

Random 42.86% 0.3237

allowed the best possible performance to be reached in all

cases, whereas the two other methods had a rate lower than

50%, which clearly indicates the efficiency of the proposal. An

analysis of the obtained average CM cost is also significantly

favorable to the new heuristic.

In the second scenario, the channel is of the form H(z) =
1 + αz−1 + βz−2 (with subsequent normalization), where α
and β vary from 0 to 2, in steps of 0.041. The results are

presented in Tab. II, and they also give support to the valid-

TABLE II

GLOBAL CONVERGENCE RATE AND AVERAGE CM COST FOR

SECOND-ORDER CHANNELS.

Init. Global Conv. Rate Average CM Cost

Heuristic 78.22% 0.3243

Center-Spike 35.44% 0.3673

Random 37.61% 0.3809

ity of the proposed initialization procedure, as the heuristic

presented a global convergence rate that is more than twice

the rate obtained by the other approaches, as well as a better

performance level in terms of average CM cost.

In the last test case, due to the dimension of the problem

at hand, 100 normalized fifth-order channels had their coeffi-

cients randomly generated according to a uniform coefficient

distribution between −1 and +1. The global convergence rates

and their average CM costs, presented in Tab. III, once again

indicate the practical relevance of the initialization heuristic.

TABLE III

GLOBAL CONVERGENCE RATE AND AVERAGE CM COST FOR

FIFTH-ORDER CHANNELS.

Init. Global Conv. Rate Average CM Cost

Heuristic 40% 0.3950

Center-Spike 16% 0.4322

Random 13% 0.4440

VII. CONCLUSIONS

In this work, we discuss a polynomial formulation of the

CM criterion, which by means of a constraint relaxation pro-

cedure, leads to a lower bound for the associated cost function.

It is shown that this bound has the potential of serving as a

sort of equalizability index i.e. a measure that indicates how

well a certain FIR equalizer will perform, ideally, for a given

received signal. Although this was not discussed here for the

sake of space limitation, the same idea can be extended to

handle the initialization process in underdetermined source

separation based on fourth-order methods (e.g., methods based

on kurtosis). The results showed that the index is useful from

an analytical standpoint and is also potentially interesting in

practice (e.g., in digital communications, space-time audio

processing etc.).

Based on the polynomial formulation, we proposed an

initialization heuristic for CMA, which showed a good per-

formance in all tested scenarios, having reached better con-

vergence rates and average CM cost than those obtained via

the canonical center-spike methodology and a random selector.

As perspectives for future work, we indicate: (i) a detailed

analysis of the lower bound and of the associated heuristic in

the context of blind source separation, (ii) a more extensive

treatment of the complex case, (iii) a search for modifications

in the heuristic that lead to further improvements and (iv)

studies for noisy channels.
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