Seleção de *Relay* em Sistemas Cooperativos Cognitivos com Múltiplos Usuários Primários

Francisco Rafael Vasconcelos Guimarães, Daniel Benevides da Costa e Charles Casimiro Cavalcante

Resumo-O desempenho de sistemas cooperativos cognitivos na presença de múltiplos receptores primários é investigado. Assumindo um ambiente com compartilhamento espectral, no qual a rede secundária é composta por uma fonte, N relays amplificae-encaminha e um nó destino, uma estratégia de seleção de relav é proposta de forma a maximizar a relação sinal-ruído fim-afim e, simultaneamente, satisfazer as restrições de interferência impostas pelos M receptores primários. Após a seleção de relay ser realizada, o nó destino seleciona o melhor caminho (link direto ou link via relay) proveniente da fonte utilizando um combinador por seleção. Uma expressão aproximada e em forma fechada para a probabilidade de outage é encontrada, a partir da qual uma análise assintótica é realizada, revelando que a ordem de diversidade do esquema proposto iguala a N+1, o que mostra que a mesma não é afetada nem pelo número de receptores primários nem pelo limiar de interferência. Simulações Monte Carlo são apresentadas com o intuito de validar a presente análise.

Palavras-Chave— Análise assintótica, compartilhamento espectral, probabilidade de *outage*, sistemas cooperativos cognitivos.

Abstract—The performance of cooperative cognitive systems in the presence of multiple receivers is investigated. Assuming a spectrum sharing environment, in which the secondary network is composed by one source, N amplify-and-forward relays, and one destination, a relay selection strategy is proposed with the aim to maximize the end-to-end signal-to-noise ratio and, at the same time, to satisfy the interference constraints imposed by the M primary receivers. After performing the relay selection, the secondary destination chooses the best path (direct link or relaying link) by employing a selection combining scheme. An approximate, closed-form expression for the outage probability is derived, from which an asymptotic analysis is carried out, revealing that the system diversity order equals to N + 1, and showing that it is not affected neither by the number of primary receivers nor by the interference threshold. Monte Carlo simulations are presented to corroborate the proposed analysis.

Keywords— Asymptotic analysis, spectrum sharing, outage probability, cooperative cognitive systems.

I. INTRODUÇÃO

Ao longo da última década, comunicações sem fio têm experimentado um considerável aumento na demanda de novos serviços e aplicações. A necessidade de uma alta taxa/confiabilidade e de uma alocação espectral eficiente aumentou o interesse em se desenvolver novas técnicas para lidar com essas novas exigências. Nesse sentido, duas técnicas promissoras, chamadas diversidade cooperativa [1] e rádiocognitivo [2], foram propostas e, a partir delas, um grande número de estudos foram desenvolvidos. A ideia da diversidade cooperativa é emular, em um sistema constituído por dispositivos de uma única antena, um arranjo de antenas virtuais através da transmissão e do processamento distribuído da informação, de forma que os mesmos benefícios obtidos em sistemas MIMO possam ser conseguidos em sistemas com dispositivos de uma única antena. Rádio-cognitivo, por sua vez, provê um uso mais eficiente do espectro de rádio, permitindo que usuários não-licenciados, chamados usuários secundários, utilizem parte do espectro inicialmente alocado para usuários licenciados, chamados de usuários primários. Este acesso ao espectro deve ser feito de tal forma que a comunicação primária não seja afetada, levando assim a um ajuste da potência de transmissão dos nós secundários de acordo com um limiar de interferência estabelecido pela rede primária. O uso simultâneo do mesmo espectro de frequência entre usuários primário e secundário é conhecido como compartilhamento espectral [3].

Vários trabalhos investigaram o uso da diversidade cooperativa em sistemas sem fio com compartilhamento espectral, e alguns destes serão brevemente discutidos na sequência. Em [4], considerando uma fonte secundária, um relay secundário, um destino secundário e um receptor primário, a análise de outage de sistemas cooperativos cognitivos com compartilhamento espectral (SCCCEs) foi realizada considerando a ausência de link direto entre a fonte e o terminal destino. A análise de [4] foi estendida em [5] para o caso de múltiplos relays secundários, onde uma técnica de seleção de relay apropriada foi proposta. Em [6], o desempenho de SCCCEs foi investigado assumindo a presença de link direto entre a fonte e o destino, onde neste último uma estratégia de combinação por seleção (SC) foi utilizada para selecionar o melhor caminho (enlace direto ou enlace via relay) entre a fonte e o destino. Este trabalho foi estendido em [7] para canais Nakagami-m. Em [8], o desempenho de SCCCEs com múltiplos relays decodifica-eencaminha foi examinado, porém o critério de seleção de *relay* adotado não levou em consideração a informação de estado do canal entre a fonte e os relays.

Neste artigo, diferentemente dos trabalhos anteriores, o desempenho de *outage* de SCCCEs composto por uma fonte secundária, N relays secundários amplifica-e-encaminha (AF), um destino secundário e M receptores primários, é investigado. Assume-se a existência do enlace direto entre a fonte e o destino. A potência de transmissão dos nós secundários é configurada de forma que a interferência que a rede secundária causa nos receptores primários fique abaixo de um dado limiar. Uma estratégia de seleção de *relay* é adotada na qual o *relay* selecionado será aquele que maximiza a relação sinalruído (SNR) fim-a-fim e, simultaneamente, satisfaz o limiar de interferência imposto pelos M receptores primários. Após a seleção de *relay* ser realizada, o nó destino seleciona o melhor caminho (*link* direto ou *link* via *relay*) proveniente da fonte

Os autores estão vinculados à Universidade Federal do Ceará (UFC), Grupo de Pesquisa em Telecomunicações Sem Fio (GTEL), Fortaleza-CE.

Fig. 1. Modelo sistêmico.

utilizando um combinador do tipo SC. Uma expressão aproximada e em forma fechada para a probabilidade de *outage* é encontrada, a partir da qual uma análise assintótica é realizada, revelando que a ordem de diversidade do esquema proposto iguala a N + 1, o que mostra que a mesma não é afetada nem pelo número de receptores primários nem pelo limiar de interferência. Simulações Monte Carlo são apresentadas com o intuito de validar a presente análise.

Ao longo deste artigo, $f_Z(\cdot)$ e $F_Z(\cdot)$ denotam, respectivamente, a função densidade de probabilidade (PDF) e a função de distribuição acumulada de uma variável aleatória (VA) arbitrária Z, h_{AB} e d_{AB} simbolizam o coeficiente de canal e a distância entre dois nós arbitrários A e B, respectivamente, $Pr(\cdot)$ indica probabilidade e $E[\cdot]$ denota média estatística.

II. MODELOS SISTÊMICO E DE CANAL

Considere um SCCCE composto por uma fonte S, Nrelays R_n (n = 1, ..., N), um destino D e M receptores primários P_m (m = 1, ..., M), como ilustrado na Fig. 1. Os transmissores primários não são levados em consideração uma vez que o foco deste artigo é a comunicação da rede secundária. Todos os nós são equipados com uma única antena e operam no modo half-duplex. É assumida a presença de linha de visada entre S e D. Os coeficientes de canal experimentam desvanecimento Rayleigh em bloco. Considera-se que todos os termos de ruído são AWGN (Additive White Gaussian Noise) com densidade espectral de potência igual a N_0 .

A SNR fim-a-fim via um *relay* arbitrário R_n pode ser expressa como $\max_n \left[\frac{\gamma_{SR_n} \gamma_{R_n D}}{1 + \gamma_{SR_n} + \gamma_{R_n D}} \right]$, em que $\gamma_{SR_n} = W_S |h_{SR_n}|^2 / N_0$ e $\gamma_{R_n D} = W_{R_n} |h_{R_n D}|^2 / N_0$ denotam a SNR instantânea dos enlaces do primeiro salto (i.e., da fonte para o *n*-ésimo *relay*) e do segundo salto (isto é, do *n*-ésimo *relay* para o destino), respectivamente, W_S e W_{R_n} são as potências de transmissão da fonte e do *n*-ésimo *relay*, sendo expressas como [4], [5]

$$W_{S} \leq \min\left(\min_{m} \frac{Q_{m}}{|h_{SP_{m}}|^{2}}, W\right),$$
$$W_{R_{n}} \leq \min\left(\min_{m} \frac{Q_{m}}{|h_{R_{n}P_{m}}|^{2}}, W\right),$$
(1)

em que W é a máxima potência de transmissão dos respectivos nós secundários e Q_m designa o limiar de interferência no mésimo receptor primário¹.

Antes da comunicação iniciar, um processo de seleção de *relay* é realizado. Nesse caso, um dentre N *relays* é selecionado para ajudar no processo de comunicação da rede secundária. Mais especificamente, o *relay* R^* escolhido será aquele que maximizar a SNR fim-a-fim, isto é:

$$R^* = \arg\max_{n} \left[\frac{\gamma_{SR_n} \gamma_{R_n D^*}}{1 + \gamma_{SR_n} + \gamma_{R_n D^*}} \right].$$
 (2)

Após a seleção de *relay*, o processo de comunicação inicia, sendo composto por duas fases. Na fase I, a fonte envia informação para $R^* \in D$ com potência de transmissão igual a W_S . Na fase II, o *relay* selecionado amplifica o sinal recebido da fonte por um fator G (determinado pelas estatísticas instantâneas do enlace fonte-*relay* selecionado) e o encaminha para D com potência de transmissão igual a W_{R_n} . Concluída a transmissão em duas fases, um combinador do tipo SC é empregado no terminal destino. Neste caso, o percurso (*link* direto ou *link* via *relay*) com a maior SNR instantânea é selecionado tal que a SNR fim-a-fim pode ser escrita como

$$\gamma_{\text{end}} = \max\left[\max_{l} \left[\gamma_{SD_{l}}\right], \max_{n} \left[\frac{\gamma_{SR_{n}}\gamma_{R_{n}D}}{1 + \gamma_{SR_{n}} + \gamma_{R_{n}D}}\right]\right], \quad (3)$$

em que $\gamma_{SD_l} = W_S |h_{SD_l}|^2 / N_0$. Perceba que os dois termos dentro do operador max $[\cdot, \cdot]$ em (3) não são estatisticamente independentes devido a presença da VA comum $|h_{SP_m}|^2$, o que torna a análise um pouco intricada.

III. PROBABILIDADE DE OUTAGE

A probabilidade de *outage* é definida como a probabilidade da SNR fim-a-fim , γ_{end} , permanecer abaixo de um limiar predefinido, γ_{th} . Na sequência, por simplicidade de notação, assume-se que $Q_m = Q$, m = 1, ..., M, de forma que as expressões $\min_m(Q_m/|h_{SP_m}|^2)$ e $\min_m(Q_m/|h_{R_nP_m}|^2)$ ficam equivalentes a $Q/(\max_m |h_{SP_m}|^2)$ e $Q/(\max_m |h_{R_nP_m}|^2)$, respectivamente.

Como mencionado anteriormente, perceba que os termos $\gamma_{SD_l} e \max_n \left[\frac{\gamma_{SR_n} \gamma_{R_n D}}{1 + \gamma_{SR_n} + \gamma_{R_n D}} \right] em (3)$ não são estatisticamente independentes devido a presença de um termo comum, $|h_{SP_m}|^2$. Para lidar com isso, seja então $X = \max_m |h_{SP_m}|^2$. De acordo com a lei da probabilidade condicional, a probabilidade de *outage* condicional pode ser escrita como

$$\Pr\left(\gamma_{\text{end}} < \gamma_{\text{th}} | X\right) = \overbrace{\Pr\left(\gamma_{SD} < \gamma_{\text{th}} | X\right)}^{r}$$
$$\times \underbrace{\Pr\left(\max_{n} \left[\frac{\gamma_{SR_{n}} \gamma_{R_{n}D}}{1 + \gamma_{SR_{n}} + \gamma_{R_{n}D}}\right] < \gamma_{\text{th}} | X\right)}_{\theta}. \quad (4)$$

0

¹Assume-se que os receptores primários estão localizados em um ambiente tal que os *links* de S para P_m experimentam desvanecimento Rayleigh independente e identicamente distribuído (i.i.d.). O mesmo pode ser dito a respeito dos *links* de R_n para P_m . Entretanto, os canais pertencentes aos enlaces interferentes $S - P_m$ experimentam condições de desvanecimento Rayleigh distintas dos enlaces $R_n - P_m$. Uma vez que os ganhos de canal são exponencialmente distribuídos, φ em (4) pode ser calculado como

$$\varphi = F_{\gamma_{SD}}(\gamma_{\text{th}}|X) = 1 - e^{-\gamma_{\text{th}} \lambda_{SD}}, \qquad (5)$$

em que $\lambda_{SD} \triangleq 1/E [\gamma_{SD}]$. Por outro lado, para determinar θ em (4), utilizamos os resultados presentes em [9] para o caso de uma única antena, i.e.,

$$\theta = 1 - \lambda_{SR_n} e^{-\gamma_{\text{th}}(\lambda_{SR_n} + \lambda_{R_n D_l})} 2 \sqrt{\frac{\Delta}{\lambda_{SR_n}}} K_1 \left(2\sqrt{\Delta\lambda_{SR_n}} \right),$$
(6)

onde $\lambda_{SR_n} \triangleq 1/E[\gamma_{SR_n}], \ \lambda_{R_nD} \triangleq 1/E[\gamma_{R_nD}], \ K_n(\cdot)$ é a função de Bessel modificada de segundo tipo e *n*-ésima ordem [10, eq. (8.432.6)], e $\Delta = \gamma_{\text{th}}(\gamma_{\text{th}} + 1)\lambda_{R_nD}$.

Seja agora $Y = \max_{m} |h_{R_n P_m}|^2$. Utilizando o Teorema da Probabilidade Total, a probabilidade de *outage* pode ser determinada como

$$P_{\text{out}} = \int_{0}^{\infty} \int_{0}^{\infty} F_{\gamma_{SD}} \left(\gamma_{\text{th}} | X \right) F_{\gamma_{SR^{*}D}} \left(\gamma_{\text{th}} | X, Y \right) \\ \times f_{X}(x) f_{Y}(y) dx dy, \tag{7}$$

em que

$$\gamma_{SR^*D} = \max_{n} \left[\frac{\gamma_{SR_n} \gamma_{R_n D}}{1 + \gamma_{SR_n} + \gamma_{R_n D}} \right]$$
(8)

e

$$f_X(x) = M(1 - e^{-x \lambda_{SP}})^{(M-1)} \lambda_{SP} e^{-x \lambda_{SP}}, f_Y(y) = M(1 - e^{-y \lambda_{R_n P}})^{(M-1)} \lambda_{R_n P} e^{-y \lambda_{R_n P}},$$
(9)

com $\lambda_{SP} \triangleq 1/E[|h_{SP_m}|^2]$ e $\lambda_{R_nP} \triangleq 1/E[|h_{R_nP_m}|^2]$. Antes do cálculo de (7), é importante observar que

$$\min\left(\frac{Q}{\chi},W\right) = \begin{cases} W, & \text{quando } \chi \le Q/W, \\ Q/\chi, & \text{quando } \chi > Q/W, \end{cases}$$
(10)

Assim, baseado em (10) e para satisfazer todas as combinações das condições da potência de transmissão, a probabilidade de *outage* pode ser calculada expandido (7) em uma soma de quatro termos, sendo cada um expresso como uma integral dupla. Mais especificamente, P_{out} pode ser reescrita como $P_{\text{out}} = \varphi_1 + \varphi_2 + \varphi_3 + \varphi_4$, em que

$$\varphi_{1} = \int_{0}^{Q/W} \int_{0}^{Q/W} F_{\gamma_{SD}} (\gamma_{th}|X) F_{\gamma_{SR*D}} (\gamma_{th}|X,Y) \\
\times f_{X}(x) f_{Y}(y) dx dy, \qquad (11)$$

$$\varphi_{2} = \int_{0}^{Q/W} \int_{Q/W}^{\infty} F_{\gamma_{SD}} (\gamma_{th}|X) F_{\gamma_{SR*D}} (\gamma_{th}|X,Y) \\
\times f_{X}(x) f_{Y}(y) dx dy, \qquad (12)$$

$$\varphi_{3} = \int_{Q/W}^{\infty} \int_{0}^{Q/W} F_{\gamma_{SD}} (\gamma_{th}|X) F_{\gamma_{SR*D}} (\gamma_{th}|X,Y)$$

$$\times f_X(x)f_Y(y)dxdy,\tag{13}$$

$$\varphi_{4} = \int_{Q/W}^{\infty} \int_{Q/W}^{\infty} F_{\gamma_{SD}} \left(\gamma_{\text{th}} | X \right) F_{\gamma_{SR^{*}D}} \left(\gamma_{\text{th}} | X, Y \right)$$
$$\times f_{X}(x) f_{Y}(y) dx dy, \tag{14}$$

onde, por questão de simplicidade de notação, assume-se que

 $W_S = W_{R_n} = W$. Fazendo as substituições apropriadas em (11) e utilizando a expansão binomial para reescrever as PDFs de X e Y dadas em (9), tem-se

$$\varphi_{1} = M^{2} \sum_{m=0}^{M-1} \sum_{t=0}^{M-1} (-1)^{m+t} \binom{M-1}{m} \binom{M-1}{t} \left(1 - e^{-\gamma_{th} \lambda_{SD}^{W}}\right)$$
$$\times \prod_{n=1}^{N} \left(1 - \lambda_{SR_{n}}^{W} e^{-\gamma_{th} \left(\lambda_{SR_{n}}^{W} + \lambda_{R_{nD}}^{W}\right)} 2 \sqrt{\frac{\Delta}{\lambda_{SR_{n}}}} K_{1} \left(2\sqrt{\Delta\lambda_{SR_{n}}}\right)\right)$$
$$\times \frac{\left(1 - e^{\left(-\frac{Q}{W}\lambda_{SP}(m+1)\right)}\right)}{\lambda_{SP}(m+1)} \frac{\left(1 - e^{\left(-\frac{Q}{W}\lambda_{R_{n}P}(t+1)\right)}\right)}{\lambda_{R_{n}P}(t+1)}, \quad (15)$$

em que

$$\lambda_{IJ}^{W} \triangleq \frac{1}{E\left[W \left| h_{IJ} \right|^2 / N_0 \right]},\tag{16}$$

com $I \in \{S, R_n\}$ e $J \in \{R_n, D\}$. Similarmente, após as substituições apropriadas, (12) pode ser escrito como

$$\varphi_{2} = \int_{0}^{Q/W} \int_{Q/W}^{\infty} \left(1 - e^{-\gamma_{\text{th}} \lambda_{SD}^{W}}\right) M (1 - e^{-x \lambda_{SP}})^{(M-1)} \\ \times \prod_{n=1}^{N} \left(1 - \lambda_{SR_{n}}^{W} e^{-\gamma_{\text{th}} \left(\lambda_{SR_{n}}^{W} + y \lambda_{R_{n}D_{l}}^{Q}\right)} \\ \times 2\sqrt{\frac{\Delta_{I}}{\lambda_{SR_{n}}}} K_{1} \left(2\sqrt{\Delta_{I}\lambda_{SR_{n}}}\right) \right) \\ \times \lambda_{SP} e^{-x \lambda_{SP}} M \left(1 - e^{-y \lambda_{R_{n}P}}\right)^{(M-1)} \times \lambda_{R_{n}P} e^{-y \lambda_{R_{n}P}} dx dy,$$
(17)

em que $y\lambda_{R_nD}^Q \triangleq 1/E\left[(Q/y)(|h_{R_nD}|^2/N_0)\right]$ e $\Delta_I = y\gamma_{\rm th}(\gamma_{\rm th}+1)\lambda_{R_nD}^Q$. A fim de prosseguir no cálculo de φ_2 , utiliza-se a seguinte identidade

$$\prod_{k=1}^{K} (1 - x_k) = \sum_{k=0}^{K} \frac{(-1)^k}{k!} \sum_{\substack{n_1 = \dots = n_k \\ n_1 < \dots < n_k}}^{K} \prod_{t=1}^{k} x_{n_t}.$$
 (18)

Como em [11], assume-se que os *relays* estão muito próximos uns dos outros de forma que os *links* de *S* para R_n possuem a mesma SNR média, i.e., $\lambda_{SR_n} = \lambda_{SR}$, $\forall n$. O mesmo pode ser dito para os *links* de R_n para *D*. Ainda assim, determinar uma expressão exata e em forma fechada para φ_2 não é trivial. Porém, fazendo o uso da aproximação $K_1(\zeta) \simeq 1/\zeta$ [10, eq. (9.6.9)], (17) pode ser aproximado por (19), apresentado no topo da próxima página. Usando uma abordagem similar, (13) e (14) podem ser aproximados por (20) e (21), respectivamente, em que $\lambda_{SR_n}^Q \triangleq 1/E \left[Q |h_{SR_n}|^2/N_0\right]$ e $\lambda_{SD}^Q \triangleq 1/E \left[Q |h_{SD}|^2/N_0\right]$.

Finalmente, substituindo (15), (19), (20) e (21) em P_{out} , uma expressão aproximada e em forma fechada para a probabilidade de *outage* é obtida. Até onde os autores estão cientes, tal expressão ainda não foi apresentada na literatura. Na sequência, uma análise assintótica será apresentada com intuito de obter alguns *insights* do sistema em estudo. Por exemplo, a partir da análise assintótica, o ganho de diversidade do sistema considerado será obtido, sendo mostrado que ele não é afetado nem pelo número de receptores primários e nem pelo limiar de interferência estabelecido pelos receptores primários.

$$\varphi_{2} \simeq M^{2} \sum_{m=0}^{M-1} \sum_{t=0}^{M-1} \sum_{n=0}^{N} (-1)^{(m+t+n)} \binom{M-1}{m} \binom{M-1}{t} \binom{N}{n} \lambda_{R_{n}P} \left(1 - e^{-\gamma_{\text{th}}} \lambda_{SD}^{W}\right) \frac{\left(1 - e^{\left(-\frac{Q}{W}\lambda_{SP}(m+1)\right)}\right)}{\lambda_{SP}(m+1)} \times \frac{\exp\left(-\gamma_{\text{th}} n \left(\lambda_{SR_{n}}^{W} + \frac{Q}{W}\lambda_{R_{n}D}^{Q}\right) - \frac{Q}{W}\lambda_{R_{n}P}(t+1)\right)}{\gamma_{\text{th}} n \lambda_{R_{n}D}^{Q} + \lambda_{R_{n}P}(t+1)}.$$
(19)

$$\varphi_{3} \simeq \sum_{l=0}^{1} \sum_{m=0}^{M-1} \sum_{t=0}^{N-1} \sum_{n=0}^{N} M^{2}(-1)^{(m+t+n+l)} \binom{M-1}{m} \binom{M-1}{t} \binom{N}{n} \lambda_{R_{n}P} \frac{\left(1-e^{\left(-\frac{Q}{W}\lambda_{R_{n}P}(t+1)\right)}\right)}{\lambda_{R_{n}P}(t+1)} \exp\left(-l\frac{Q}{W}\gamma_{th} \lambda_{SD}^{Q}\right) \times \lambda_{SP} \frac{\exp\left(-n\gamma_{th}\left(\frac{Q}{W}\lambda_{SR_{n}}^{Q}+\lambda_{R_{n}D}\right)-\frac{Q}{W}\lambda_{SP}(m+1)\right)}{l\gamma_{th} \lambda_{SD}^{Q}+n\gamma_{th}\lambda_{SR_{n}}^{Q}+\lambda_{SP}(m+1)}.$$

$$(20)$$

$$\varphi_{4} \simeq \sum_{l=0}^{1} \sum_{m=0}^{M-1} \sum_{t=0}^{M-1} \sum_{n=0}^{N} M^{2}(-1)^{(m+t+n+l)} \binom{M-1}{m} \binom{M-1}{t} \binom{N}{n} \lambda_{R_{n}P} \exp\left(-l\frac{Q}{W}\gamma_{th} \lambda_{SD}^{Q}\right) \exp\left(-\frac{Q}{W}\lambda_{R_{n}P}(t+1)\right) \times \frac{1}{n\gamma_{th}\lambda_{R_{n}D}^{Q} + \lambda_{R_{n}P}(t+1)} \frac{\exp\left(-n\gamma_{th}\frac{Q}{W}(\lambda_{SR_{n}}^{Q} + \lambda_{R_{n}D}^{Q}) - \frac{Q}{W}\lambda_{SP}(m+1)\right)}{l\gamma_{th} \lambda_{SD}^{Q} + n\gamma_{th}\lambda_{SR_{n}}^{Q} + \lambda_{SP}(m+1)}.$$
(21)

A. Análise Assintótica

Para realizar a análise assintótica, seja $\overline{\gamma} \triangleq 1/N_0$ a SNR do sistema e seja $Q/W = \mu$, em que μ é uma constante positiva. Utilizando a expansão em série de MacLaurin para a função exponencial e a aproximação da função Bessel, $K_1(\tau) \simeq 1/\tau$, e percebendo que quando $\overline{\gamma} \to \infty$, $\lambda_{SP} \gg \frac{\gamma_{\rm th}}{\overline{\gamma}}$ e $\lambda_{R_nP} \gg \frac{\gamma_{\rm th}}{\overline{\gamma}}$, uma expressão assintótica para cada termo φ_i pode ser escrita como

$$P_{\text{out}}^{\varphi_1} \simeq \left(\gamma_{\text{th}} \lambda_{SD}^W\right) M^2 \sum_{m=0}^{M-1} \sum_{t=0}^{M-1} (-1)^{m+t} \binom{M-1}{m} \binom{M-1}{t} \\ \times \frac{\left(1 - e^{(-\mu \lambda_{SP}(m+1))}\right)}{\lambda_{SP}(m+1)} \frac{\left(1 - e^{(-\mu \lambda_{RnP}(t+1))}\right)}{\lambda_{RnP}(t+1)} \\ \times \prod_{n=1}^{N} \left[\gamma_{\text{th}} \left(\lambda_{SR_n}^W + \lambda_{RnD}^W\right)\right] \propto \left(\frac{1}{\overline{\gamma}}\right)^{N+1}, \quad (22)$$

$$P_{\text{out}}^{\varphi_2} \simeq \left(\gamma_{\text{th}} \lambda_{SD}^W\right) M^2 \sum_{m=0}^{M-1} \sum_{t=0}^{M-1} (-1)^{m+t} \binom{M-1}{m} \binom{M-1}{t} \\ \times \frac{\left(1 - e^{(-\mu \lambda_{SP}(m+1))}\right)}{\lambda_{SP}(m+1)} \frac{e^{(-\mu \lambda_{R_nP}(t+1))}}{(t+1)} \\ \times \prod_{n=1}^N \left[\gamma_{\text{th}} \left(\lambda_{SR_n}^W + \mu \lambda_{R_nD}^Q\right)\right] \propto \left(\frac{1}{\overline{\gamma}}\right)^{N+1}, \quad (23)$$

$$P_{\text{out}}^{\varphi_3} \simeq \left(\mu \gamma_{\text{th}} \lambda_{SD}^Q\right) M^2 \sum_{m=0}^{M-1} \sum_{t=0}^{M-1} (-1)^{m+t} \binom{M-1}{m} \binom{M-1}{t}$$
$$\times \frac{\left(1 - e^{(-\mu \lambda_{R_nP}(t+1))}\right)}{\lambda_{R_nP}(t+1)} \frac{e^{(-\mu \lambda_{SP}(m+1))}}{(m+1)}$$
$$\times \prod_{n=1}^N \left[\gamma_{\text{th}} \left(\mu \lambda_{SR_n}^Q + \lambda_{R_nD}^W\right)\right] \propto \left(\frac{1}{\overline{\gamma}}\right)^{N+1}, \quad (24)$$

$$P_{\text{out}}^{\varphi_4} \simeq \left(\mu \gamma_{\text{th}} \lambda_{SD}^Q\right) M^2 \sum_{m=0}^{M-1} \sum_{t=0}^{M-1} (-1)^{m+t} \binom{M-1}{m} \binom{M-1}{t} \times \frac{\left(e^{(-\mu \lambda_{R_nP}(t+1))}\right)}{(t+1)} \frac{e^{(-\mu \lambda_{SP}(m+1))}}{(m+1)} \times \prod_{n=1}^N \left[\mu \gamma_{\text{th}} \left(\lambda_{SR_n}^Q + \lambda_{R_nD}^Q\right)\right] \propto \left(\frac{1}{\gamma}\right)^{N+1}.$$
 (25)

Das expressões analíticas acima, é fácil perceber que o sistema possui ordem de diversidade igual a N + 1. Observe que as restrições de interferência nem o número de receptores primários influenciam no ganho de diversidade.

IV. RESULTADOS NUMÉRICOS E DISCUSSÕES

Nesta Seção, alguns exemplos numéricos serão apresentados com o intuito de validar a análise apresentada neste artigo. Como em trabalhos anteriores [9], é considerado um plano bidimensional para a localização dos nós da rede, onde, sem perda de generalidade, a fonte secundária está localizada em (0,0), os N relays secundários estão posicionados em (0.5,0), o destino secundário está localizado em (1,0) e os M receptores primários estão posicionados em (0,1). A média estatística dos ganhos de canal entre dois nós é determinada por $d^{-\rho}$, com d denotando a distância entre os respectivos nós e ρ sendo o coeficiente de perda de percurso, cujo valor escolhido na simulação foi $\rho = 4$. O limiar de *outage*, γ_{th} , escolhido foi 3 dB. Como será observado, todos os casos investigados revelam uma excelente concordância entre os resultados analíticos e simulados.

A Fig. 2 mostra o comportamento das curvas *outage* aproximada e assintótica assumindo N = 3 relays e diferentes números de receptores primários. Como esperado, quando o número de receptores primários aumenta, o desempenho de

Fig. 2. Probabilidade de *outage* e comportamento assintótico para diferentes números de receptores primários (N = 3, $Q/N_0 = W/N_0$).

Fig. 3. Probabilidade de *outage* e comportamento assintótico para diferentes números de *relays* (M = 3, W = Q = 0.5).

outage piora. Entretanto, pode ser visto que o número de receptores primários não influencia da ordem de diversidade do sistema, a qual é igual a N+1

Diferentemente da Fig. 2, na Fig. 3 foi fixado o número de receptores primários, M = 3, e variado o número de *relays*. Como esperado, perceba que o aumento de N provoca um melhor desempenho de *outage* e um aumento na ordem de diversidade do sistema, mostrando que a diversidade cooperativa apresenta um grande benefício para o desempenho do sistema. Nestas duas figuras, as curvas assintóticas e aproximada estão muito próximas da curva simulada em regiões de alta SNR, o que confirma que a análise feita está correta.

A Fig 4 mostra como a restrição de interferência, Q, influencia no desempenho de *outage*. Assumindo N = M = 3, percebe-se que o sistema satura após um certo valor de SNR. Isto acontece porque o sistema atinge a máxima potência de transmissão permitida. Além disso, quando o limiar de interferência aumenta, o comportamento sistêmico se aproxima do caso de "não-interferência".

V. CONCLUSÕES

O desempenho de *outage* de SCCCEs na presença de enlace direto foi investigado. Empregando uma estratégia de seleção

de *relay*, uma expressão aproximada e em forma fechada para a probabilidade de *outage* foi encontrada, a partir da qual foi

Fig. 4. Impacto da restrição de interferência na probabilidade de *outage* (M = 5, N = 3).

realizada uma análise assintótica. Observou-se que: (i) nem o número de receptores nem os limiares de interferência têm influência na ordem de diversidade do sistema, e (ii) a restrição de interferência imposta pelos receptores primários causa um fenômeno de saturação na probabilidade de *outage*. De acordo com o conhecimento dos autores, este tipo de análise não foi desenvolvida na literatura ainda, o que a torna muito importante para o desenvolvimento de sistemas cooperativos cognitivos com compartilhamento espectral e na presença de múltiplos receptores primários.

REFERÊNCIAS

- J. N. Laneman, D. N. C. Tse e G. W. Wornell, "Cooperative diversity in wireless networks: Efficient protocols and outage behavior," *IEEE Trans. Inf. Theory*, vol. 50, no. 12, pp. 3062–3080, Dez. 2004.
- [2] J. Mitola, "Cognitive radio: An integrated agent architecture for software defined radio," Ph.D. dissertation, Royal Inst.Technol. (KHT), Dez. 2000.
- [3] A. Ghasemi e E. S. Sousa, "Fundamental limits of spectrum-sharing in fading environments," *IEEE Trans. Wireless Commun.*, vol. 6, no. 2, pp. 649–658, Fev. 2007.
- [4] C. Zhong, T. Ratnarajah, e K.-K. Wong, "Outage analysis of decodeand-forward cognitive dual-hop systems with the interference constraint in Nakagami-*m* fading channels," *IEEE Trans. Veh. Technol.*, vol. 60, no. 6, pp. 2875–2879, Jul. 2011.
- [5] J. Lee, H. Wang, J. G. Andrews e D. Hong, "Outage probability of cognitive relay networks with interference constraints," *IEEE Trans. Wireless Commun.*, vol. 10, no. 2, pp. 390–395, Fev. 2011.
- [6] T. Q. Duong, V. N. Q. Bao, G. C. Alexandropoulos, e H. -J. Zepernick, "Cooperative spectrum sharing networks with AF relay and selection diversity," *IET Electron. Lett.*, vol. 47, no. 20, Set. 2011.
- [7] T. Q. Doung, D. B. da Costa, M. Elkashlan e V. N. Q. Bao, "Cognitive amplify-and-forward relay networks over Nakagami-*m* fading," *IEEE Trans. Veh. Technol.*, vol. 61, no. 5, pp. 2368–2374, Jun. 2012.
- [8] L. Luo, P. Zhang, G. Zhang, e J. Qin, "Outage performance for cognitive relay networks with underlay spectrum sharing," *IEEE Commun. Lett.*, vol. 15, no. 7, pp. 710–712, Jul. 2011.
- [9] M. A. B. de Melo e D. B. da Costa, "An efficient relay-destination selection scheme for multiuser multirelay downlink cooperative networks," *IEEE Trans. Veh. Technol.*, vol. 61, no. 5, pp. 2354–2360, Jun. 2012.
- [10] M. Abramowitz e I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York, 1972.
- [11] D. B. da Costa e S. Aissa, "End-to-end performance of dual-hop semiblind relaying systems with partial relay selection," *IEEE Trans. Wireless Commun.*, vol. 8, no. 8, pp. 4306–4315, Ago. 2009.