Desempenho do algoritmo beamformer MVDR através da variação de distância entre dois microfones

Roberto Cyrulnik e Ivandro Sanches

Resumo— O presente trabalho apresenta um estudo sobre as influências da variação da distância entre dois microfones em um algoritmo de filtragem espacial chamado *beamformer* MVDR (*minimum variance distortionless response*). Para obtenção dos resultados experimentais foram utilizados dois métodos: a ferramenta de simulação de arranjo de microfones e antenas do MATLAB, o *Phased Array* e através de dados obtidos na câmara varecóica do Bell Labs. Neste último, foram realizadas medições em um arranjo linear de 22 microfones, variando-se a posição de uma fonte sonora. Os detalhes de implementação do algoritmo e ensaios são demontrados neste artigo.

Palavras-Chave-beamformer, arranjo de microfones, MVDR.

Abstract— This work presents a study about the influence of the distance variation between two microphones in a spacial filtering algorithm called MVDR (minimum variance distortionless response) beamformer. Experimental results were obtained in two procedures: via the MATLAB Phased Array toolbox that simulates microphone and antenna arrays and via Bell Labs varechoic chamber database. The latter contains measurements made on a 22 linear microphone array for many sound source localizations. Details of the algorithm implementation and experimental procedures were shown on this article.

Keywords— arranjo de microfones, microphone array, beamforming, MVDR

I. INTRODUÇÃO

Comunicação em ambientes ruidosos é um grande desafio para trabalhadores, militares e policiais pois a inteligibilidade fica comprometida. Os dispositivos de comunicação como rádios comunicadores ou telefones celulares utilizados nessas áreas captam a voz do locutor adicionada ao ruído, prejudicando a comunicação com o receptor.

São exemplos de ambientes extremamente ruidosos: pistas de aeroportos, estádios de futebol, shows, indústrias siderúrgicas e indústrias de mineração, ambientes onde o ruído pode alcançar níveis de pressão sonora muito elevados. Um policial durante sua guarda em um estádio de futebol recebe ordens enquanto a torcida gera ruídos extremos. Um operário em uma indústria siderúrgica deve comunicar-se com seu colega em um ambiente extremamente ruidoso. Um soldado deve transmitir informações sobre o inimigo dentro do campo de batalha imerso ao som de metralhadoras, explosões, etc. Em todos esses ambientes o dispositivo de comunicação, que pode ser um rádio comunicador ou um aparelho celular, deve

Roberto Cyrulnik e Ivandro Sanches, Departamento de Engenharia Elétrica, Centro Universitário da FEI, São Bernardo do Campo-SP, Brasil, E-mails: rocyrulnik@yahoo.com.br, isanches@fei.edu.br. possuir um meio de suprimir o ruído ambiente para que o receptor consiga receber a informação com qualidade.

Existem algumas técnicas avançadas de supressão de ruído como CASA (Computational Auditory Scene Analysis) [13], BSS (Blind Source Separation) [13] e beamforming.

CASA utiliza o conceito sensorial da audição humana para separar diferentes fontes de sinais. Esse conceito utiliza um processo de dois estágios: a segmentação e o agrupamento. Durante a segmentação o sinal de entrada é decomposto em uma coleção de regiões tempo-frequência chamados segmentos. No segundo estágio, o agrupamento, os segmentos são agrupados de acordo com regras perceptuais para separar as diferentes fontes que geraram o sinal de entrada. Essa é uma técnica muito recente e ainda necessita de mais estudos para que possa ser implementada em dispositivos móveis.

Alguns algoritmos de BSS utilizam a técnica ICA (*independent component analysis*). Porém, esses algoritmos tendem a perder performance drasticamente em ambientes que possuem mais fontes sonoras do que microfones [13].

Beamforming é um método de filtragem espacial que diferencia os sinais desejados do ruído e interferência através de um arranjo de microfones. Essa técnica já está sendo implementada em DSP's (*Digital Signal Processor*) [6] e FPGA [12].

São alguns exemplos de *beamformers*: MVDR no domínio da frequência ou FMV (*frequency minimum variation*) [9], o algoritmo de Frost no domínio do tempo [7] e GSC (*generalized sidelobe canceler*) [8]. Testes com esses *beamformers* foram realizados utilizando dois microfones.

Como resultado dos testes entre os beamformers, o MVDR no domínio da frequência apresentou a melhor relação sinal ruído e a menor distorção do sinal desejado na saída do sistema [9].

Portanto, para esse trabalho, será utilizado o *beamformer* MVDR.

O objetivo desse artigo é apresentar a influência da distância entre dois microfones em um *beamformer* MVDR. Alguns artigos apresentam aplicações de *beamformer*, porém não apresentam um estudo sobre a influência da distância entre os microfones para a performance do sistema.

Para comprovar essa influência foram utilizados dois métodos experimentais: o *toolbox Phased Array System* do MATLAB [1] e dados gerados através de um arranjo de 22 microfones na câmara varecóica do laboratório Bell Labs [2]. O *toolbox Phased Array System* pode simular um arranjo de microfones de vários formatos e com diferentes números de elementos além de fontes sonoras em diferentes azimutes e elevações. No caso da câmara varecóica, uma simulação bem mais próxima da realidade pode ser efetuada. Nesse ambiente foram instalados 22 microfones de forma linear e a posição de uma fonte sonora foi variada, gerando funções de transferência entre os microfones e a fonte sonora. Os experimentos utilizaram arranjos de dois microfones.

Esse artigo é estruturado da seguinte maneira: na Seção II será apresentada a implementação do algoritmo, e, a seguir, na Seção III as técnicas de ensaio. Por fim, na Seção IV serão apresentados os resultados desse trabalho e, logo após, as conclusões.

II. IMPLEMENTAÇÃO DO ALGORITMO

O sinal no domínio do tempo é transformado periodicamente (a cada L = 16 amostras) no domínio da frequência via DFT de comprimento N, utilizando a janela de Hamming. Em um sistema com dois microfones, os sinais no domínio da frequência são representados por componentes do vetor $\mathbf{X}_k = [X_{1k} \ X_{2k}]$ onde k é o índice da frequência. As F mais recentes DFT's são armazenadas em um *buffer* e uma matriz de correlação \mathbf{R}_k é calculada para cada índice de frequência k através de:

$$\mathbf{R}_{k} = \begin{bmatrix} \frac{M}{F} \sum_{i=1}^{F} X_{1k,i}^{*} X_{1k,i} & \frac{1}{F} \sum_{i=1}^{F} X_{1k,i}^{H} X_{2k,i} \\ \frac{1}{F} \sum_{i=1}^{F} X_{2k,i}^{*} X_{1k,i} & \frac{M}{F} \sum_{i=1}^{F} X_{2k,i}^{H} X_{2k,i} \end{bmatrix},$$
(1)

onde ^{*H*} representa o conjugado transposto e *M* é um fator multiplicativo regulador, um pouco maior que 1.00 que ajuda a evitar a singularidade da matriz e melhora a robustez a descasamento de microfones. O valor de *N* utilizado foi de 1024, M = 1.03, 1.03 e F = 32. As matrizes de correlação foram atualizadas a cada L = 16 amostras, permitindo que elas fossem atualizadas rapidamente com variação do sinal de entrada. Para cada frequência *k*, a saída do *beamformer* é:

$$\mathbf{Y}_k = \mathbf{w}_k^H \mathbf{X}_k,\tag{2}$$

onde \mathbf{w}_k é um vetor de pesos no domínio da frequência. A otimização do algoritmo e restrição são expressas, para cada frequência, como:

$$\mathbf{w}_{opt,k} = \arg\min_{\mathbf{W}_k} E\left\{ |\mathbf{Y}_k|^2 \right\},\tag{3}$$

restrito a

$$\mathbf{d}^H \mathbf{w}_k = 1, \tag{4}$$

onde arg min representa a minimização da função em relação ao peso \mathbf{w}_k e *E* representa a operação esperança. O vetor **d** indica a direção do sinal desejado. Para uma fonte sonora localizada no azimute 0° ambos os microfones devem receber os sinais ao mesmo tempo, com a mesma amplitude. Para isso, deve-se utilizar $\mathbf{d}^H = [1 \ 1]$. Como resultado da minimização representada pelas Equações 3 e 4, obtem-se o vetor peso ótimo dado por:

$$\mathbf{w}_{opt,k} = \frac{\mathbf{R}_k^{-1}\mathbf{d}}{\mathbf{d}^H \mathbf{R}_k^{-1}\mathbf{d} + \sigma},$$
(5)

onde \mathbf{R}_k^{-1} representa a matriz inversa de \mathbf{R}_k e σ é um valor muito pequeno que previne a divisão por zero. Para obter

a saída no domínio da frequência, os vetores peso $\mathbf{w}_{opt,k}$ para cada frequência k são aplicados ao *buffer* de DFT's (Equação 2). Os N valores no domínio da frequência são então transformados no domínio do tempo através de uma anti-transformada de comprimento N (IDFT). Isso ocorre a cada L amostras. Somente as L amostras centrais no domínio do tempo são utilizadas. Na Figura 1 é mostrado um diagrama de blocos do algoritmo *beamformer* MVDR.

Fig. 1: Diagrama de blocos do algoritmo beamformer MVDR

III. MÉTODOS EXPERIMENTAIS

Os dados de entrada utilizados para obter os resultados experimentais foram gravados por um dipositivo M-Audio MicroTrack, a uma frequência de amostragem de 48kHz, 16 bits. Para obter o sinal de saída dos microfones através da variação de sua distância e a variação do azimute da fonte sonora, foram utilizados dois meios:

- MATLAB, utilizando a toolbox Phased Array System [1];

 respostas ao impulso obtidas no Bell Labs através de um arranjo de 22 microfones e fontes sonoras em várias posições [2].

Nas duas subseções seguintes serão detalhados esses dois meios.

A. Dados gerados pelo MATLAB

O MATLAB possui um *toolbox* chamado *Phased Array System* [1] que pode simular os sinais obtidos nas saídas de um arranjo de microfones através de sinais gerados por fontes sonoras em diferentes azimutes e elevações. Para obter as saídas dos microfones devem ser utilizados os seguintes parâmetros de entrada:

- resposta em magnitude do microfone que pode ser ominidirecional ou customizada;
- posicionamento do arranjo de microfones que pode ser ULA (*uniform linear array*), URA (*uniform retangular array*) ou *conformal* onde pode-se customizar o posicionamento do arranjo de microfones;
- número de microfones do arranjo;
- distância entre os microfones do arranjo;
- velocidade do som em metros por segundo;
- vetores contendo os arquivos de áudio que irão simular as fontes sonoras;
- vetores contendo as informações de azimute e elevação de cada fonte sonora;
- frequência de amostragem.

Um exemplo para o *Phased Array* é ilustrado nas Figuras 2 e 3. Na Figura 2 são mostrados os parâmetros de entrada no *Phased Array* para um arranjo linear de dois microfones, composto por 3 fontes sonoras representadas pelos vetores contendo **X1**, **X2** e **X3**, posicionadas nos respectivos azimutes θ_1 , $\theta_2 \in \theta_3$. Na Fig 3 é ilustrado o comportamento físico dos parâmetros de entrada da Fig 2.

Fig. 2: Dados de entrada para o *toolbox Phased Array* do MATLAB e vetores de saída **mic_out_1** e **mic_out_2** para a configuração de 2 microfones.

B. Dados gerados pela câmara varecóica

A câmara varecóica localizada no Bell Labs [3] consiste em uma sala onde o piso, as paredes e o teto estão recobertos por um conjunto de painéis controlados digitalmente. Os painéis são compostos por lâminas de aço perfuradas e móveis, contendo em sua parte traseira fibra de vidro para absorver

Fig. 3: Modelo físico do *toolbox Phased Array* segundo os parâmetros indicados na Figura 2.

o som. Em função da coloção relativa das lâminas podese controlar as propriedades acústicas da sala (reverberação). Nessa câmara realizou-se uma série de medições através de um arranjo linear de microfones [2]. Um arranjo de 22 microfones é posicionado na parede norte de câmara varecóica, em frente a uma placa de fibra de vidro . Uma caixa de som foi posicionada em 31 locais distintos para obter a resposta ao impulso na saída dos 22 microfones. A câmara varecóica foi configurada para uma abertura de 89%, que corresponde a um tempo T60 de reverberação de 0.28 segundos. As respostas ao impulso foram adquiridas a uma frequência de amostragem de 48 kHz e foram gravadas em arquivos *WAV* de 22 canais. Assim, foram fornecidos 31 arquivos, com 22 canais cada um. As posições dos microfones e da fonte sonora podem ser observadas na Figura 4.

Fig. 4: Posições da fonte sonora e do arranjo de microfones na câmara varecóica durante o experimento de Aki Härma [2].

Para obtenção dos resultados desse artigo, foram utilizados os pares de microfones 9 - 11 e 8 - 12, correspondendo as respectivas distâncias entre microfones de 200 mm e 400 mm. As posições da fonte sonora utilizadas foram: v17, v26, v35,

v34, v33, v22 e v11, correspondendo respectivamente aos azimutes: -64.39° , -39.36° , -16.22° , 0° , $+16.22^{\circ}$, $+39.36^{\circ}$ e $+64.39^{\circ}$.

Na Figura 4 pode-se verificar as dimensões da sala assim como a disposição dos microfones e as posições que o altofalante assumiu para obter as repostas ao impulso nas saídas dos microfones.

IV. RESULTADOS

A. Resultados dos dados gerados pelo MATLAB

Fig. 5: Setup para obter os resultados da variação de distância entre os microfones através do *toolbox Phased Array* do MATLAB.

Para esse experimento, foram utilizados dois microfones omnidirecionais, em um arranjo uniforme linear (ULA).O vetor (**X**) contendo o arquivo de áudio foi obtido na frequência de amostragem de 48 kHz, 16 bits, utilizando o dispositivo de gravação M-Audio Microtrack II onde o narrador é do sexo masculino com idade de 35 anos, com a emissão de um sinal acústico totalmente sonoro constituído pela pronúncia de 5 vogais. Esse mesmo vetor **X** foi utilizado como fonte sonora para todos os azimutes . Após passar pelo *Phased Array*, são obtidos dois vetores: o **mic_out_1** e o **mic_out_2**. Esses vetores são submetidos ao algoritmo MVDR e a saída **Y** é obtida. O vetor de entrada **X** é então correlacionado com o vetor de saída **Y** como mostra a Equação 6:

$$\mathbf{R}_{XY} = R_{XY}(m) = E[X(n+m) * Y^{H}(n)], \quad (6)$$

onde $R_{XY}(m)$ é a correlação cruzada entre os vetores **X** e **Y** para um determinado azimute θ , E é a esperança, * é a convolução entre os dois vetores e $Y^H(n)$ é o conjugado transposto de Y(n). Considerando que o maior vetor possui comprimento M, m pode variar entre -M + 1 e M - 1. A maior energia para um determinado azimute θ é calculada através do maior valor de \mathbf{R}_{XY} , isto é, $max(\mathbf{R}_{XY})$. As energias são normalizadas para cada uma das distâncias entre microfones (d), obtendo-se o gráfico da Figura 6. As distâncias entre microfones consideradas foram 20 mm, 50 mm e 100 mm. O gráfico da Figura 6 mostra que quanto maior for a distância entre os microfones, mais seletivo é o algoritmo.

B. Resultados dos dados gerados pela câmara varecóica

Para cada uma das posições da fonte sonora v17, v26, v35, v34, v33, v22 e v11 escolhidas na Seção III-B e para cada par de microfones (9, 11) e (8, 12) o mesmo sinal de entrada, \mathbf{X} , utilizado na Seção IV-A foi utilizado como entrada para essa configuração. O sinal de entrada \mathbf{X} foi convoluído com as respostas ao impulso relativas a posição da fonte sonora

Fig. 6: Máxima correlação normalizada (energia) entre o sinal de entrada X e o sinal de saída Y.

e os microfones escolhidos. Os sinais obtidos (**mic_out_1** e **mic_out_2**) foram normalizados em energia como mostra a Equação 7:

$$\operatorname{mic_out_1'} = \frac{\operatorname{mic_out_1}}{\sqrt{\operatorname{mic_out_1}^{H}\operatorname{mic_out_1}}},$$
(7)

onde o símbolo H representa o transposto conjugado do vetor **mic_out_1**. O mesmo procedimento é realizado para o vetor **mic_out_2**. Essa normalização, sem alterar o alvo da investigação, visa reduzir efeitos indesejados causados por eventuais diferenças nas respostas de magnitude entre os 4 microfones utilizados e nas várias distâncias resultantes entre fonte sonora e microfones. O vetor é submetido então ao algoritmo MVDR e o sinal de saída Y é obtido.

Fig. 7: Setup para obter os resultados da variação de distância entre os microfones através da câmara varecóica.

A correlação entre o sinal de entrada **X** e o sinal de saída **Y** é realizada através da Equação 6. Assim como na seção anterior, são utilizados os máximos valores de \mathbf{R}_{XY} e as energias são normalizadas para cada par de microfones selecionados.

O resultado pode ser observado na Figura 8.

Assim como na Seção IV-A, distanciando-se os microfones, o algoritmo torna-se mais seletivo.

Como sugerido por um dos revisores do artigo, compararam-se os resultados simulados pelo phased array nas mesmas condições experimentais da Figura 8. Essa comparação é apresentada na Figura 9. O caso simulado com phased array ficou muito semelhante ao experimental. Esse fato surpreende pois condições reais introduzem efeitos que produzem resultados bem diferentes da situação ideal, como por exemplo: descasamento entre microfones (tanto em amplitude como em fase), reverberação do ambiente, o fato da frente de onda não poder ser considerada plana em condições em que a fonte sonora está muito próxima dos microfones.

Fig. 8: Máxima correlação normalizada (energia) entre o sinal de entrada **X** e o sinal de saída **Y** para a câmara varecóica.

Fig. 9: Comparação entre os resultados simulados pelo phased array com os resultados experimentais obtidos na Figura 8.

V. CONCLUSÕES

O beamformer MVDR no domínio da frequência ou FMV (frequency minimum variation) é um algoritmo que possui boa relação sinal ruído e menor distorção do sinal quando comparado a outros beamformers [9]. Existem muitas aplicações para o beamformer, dentre elas, os dispositivos portáteis como notebooks, tablets [14], sistemas de viva-voz para veículos [12] e sistemas de comunicação ao trabalhador [15]. Este artigo apresentou um estudo sobre a influência da distância entre dois microfones na performance de um beamformer MVDR. Para comprovar essa influência, foram utilizados dois métodos experimentais. O primeiro com a utilização do toolbox Phased Array System do MATLAB [1] que simula arranjo de microfones. O segundo com dados gerados através de um arranjo de 22 microfones na câmara varecóica do laboratório Bell Labs [2]. Os experimentos contemplaram arranjos de dois microfones. Ao se analisar os resultados desses experimentos, nota-se que tanto na Figura 6 como na Figura 8 nota-se que a seletividade do conjunto aumenta com o aumento da distância entre os microfones. Esse resultado confirmou a expectativa inicial, pois sinais vindos de direções mais afastadas da direção de azimute zero chegarão mais descorrelacionados entre os microfones.

REFERÊNCIAS

- The MathWorks Inc., Phased Array Toolbox, Natick, MA. Acesso em 30/01/2012. Disponível em: http://www.mathworks.com/products/phased-array/
- [2] A. Härmä. Microphone array measurements from the varechoic chamber. Bell Laboratories, Murray Hill. NJ. em 15/02/2012. Disponível 2001. EUA. outubro Acesso em: http://www.acoustics.hut.fi/~aqi/vardata/Varechoic_array_data.html
- Bell Labs, Varechoic Chamber. Acesso em 15/02/2012. Disponível em: http://www.belllabs.com/org/1133/Research/Acoustics/VarechoicChamber.html
- [4] R. Adve, Optimal University Tobeamforming. of 2011. 21/08/2011. Disponível ronto, Acesso em em: http://www.comm.toronto.edu/~rsadve/Notes/BeamForming.pdf
- [5] M. D. Burkhard; R. M. Sachs, Anthropometric manikin for acoustic research. Illinois, EUA, 1978. Acesso em 21/08/2011. Disponível em: http://www.gras.dk/documents/00316.pdf
- [6] M. E. Elledge et al., "Real-time implementation of a frequency-domain beamformer on the TI C62X EVM." *10th Annual DSP Technology Education and Research Conference*, Texas Instrument, Houston, TX, 2000.
- [7] O. L. Frost, "An algorithm for linearly constrained adaptive array processing", *Proceeding of the IEEE*, IEEE, v. 60, n. 8, p. 926–935, 1972.
- [8] J. E. Greenberg, "Modified LMS algorithms for speech processing with an adaptive noise canceller", *IEEE Transactions on speech and audio* processing, IEEE, v. 6, p. 338–351, 1998.
- [9] M. E. Lockwood et al., "Performance of time- and frequency-domain binaural beamformers based on recorded signals from real rooms", J. Acoustic. Soc. Am., Acoustical Society of America, v. 115, p. 379–391, 2004.
- [10] J. Bitzer, K.U. Simmer, "Superdirective microphone arrays", in *Microphone Arrays*, M. S. Brandstein and D. B. Ward, Eds., chapter 2, pp. 19-38. Springer, 2001.
- [11] B. D. V. Veen, K. M. Buckley, "Beamforming: A versatile approach to spatial filtering", *IEEE ASSP Magazine*, IEEE, p. 338–351, abr 1998.
- [12] N. V. Vu et al., "Small footprint implementation of dual-microphone delay-and-sum beamforming for in-car speech enhancement," *ICASSP* 2010, pp. 1482–1485, 2010.
- [13] D. Wang; G. J. Brown, Computational Auditory Scene Analysis. Principles, Algorithms and Applications. Hoboken, New Jersey: Wiley-Interscience, pp. 1–37 and 187–205, 2005
- [14] MICROSOFT. Microphone Array Support in Windows Vista. Acesso em 02/02/2012. Disponível em: http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/MicArrays.doc
- [15] SENSEAR, P. Protetores auditivos com comunicação Sensear. 2011. Acesso em 31/08/2011. Disponível em: http://www.sensear.com