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The Use of Discrete Prolate Spheroidal Sequences

and Trig Prolates to Compressed Sensing
Juliana M. de Assis and Edmar C. Gurjão

Abstract— Compressed sensing may offer the possibility to
acquire certain signals at a rate below Nyquist with guaranteed

perfect recovery of these signals. In the present article, we investi-
gate the utilization of Discrete Prolate Spheroidal Sequences as a
sparsifying basis for multiband signals, from where compressed
sensing may be applied. We also compare their use with the
use of trig prolates, a similar and simpler to compute basis,
in the context of compressed sensing. Using CoSaMP as the
reconstruction algorithm we demonstrate the infeasibility of trig
prolates as a basis for perfect recovery.

Keywords— Discrete Prolate Spheroidal Sequences, Trig Pro-
lates, Compressed Sensing, Compressive Sampling Matching
Pursuit.

I. INTRODUCTION

Since the works of Nyquist and Shannon related to analog

to digital conversion, technology evolved in a frenetic way.

Nyquist theorem establishes rules to sampling and recovering

analog signals as long as the sampling rate is greater than or

equal to twice its greater frequency component, Bnyq ≥ 2B
[1]. Development of algorithms and hardware permitted this

theorem to be used extensively, as also allowed the observation

of Moore’s Law [2]. Nevertheless, the acquisition of signals

with ever growing bandwidth turns hardware more expensive,

imposing restrictions to digital signals processing.

In this context, the theory of compressed sensing, or

compressive sampling, CS, has been developed by Donoho,

who searched for a way to capture and transmit only the

information present in a signal [3], and by Candès and

Tao, who simultaneously tried to accomplish this by random

projections [4]. If analog signals can be approximately sparse

in some basis, as will be latter explained, then it is possible

to use much less than the Nyquist number of samples to

acquire it. This paper investigates the use of Discrete Prolate

Spheroidal Sequences (DPSS) as basis in CS, as also the use

of trig prolates as basis substitutes for DPSS. DPSS are most

indicated when dealing with multiband signals, that is, signals

whose Fourier transform is concentrated on a small number

of continuous intervals or bands [5]. These are different from

multitone signals, which are frequently used in the context of

telecommunications. Multitone signals are well expressed by

the Discrete Fourier Transform (DFT) simply.

This article is organized as follows, in Section II fundamen-

tals of CS are presented, in Section III the DPSS are described,

as also their use as a basis. Section IV brings the results of
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simulations with the use of different basis (DFT, DPSS, and

trig prolates) and the same reconstruction algorithm - CoSaMP.

In Section V we review the application of DPSS in CS. Finally,

in Section VI conclusion and perspective for future works are

presented.

II. COMPRESSED SENSING BACKGROUND

In this section some mathematical concepts are presented to

help the understanding of CS. A signal x ∈ R
N is S-sparse if

|supp(x)| = ||x||0 ≤ S. (1)

The |supp(x)| is also called the ℓ0-norm, though it is not a

true norm, and it counts the number of nonzero components.

The ℓp-norm, for 1 ≤ p <∞, is given by:

||x||p =





n
∑

j=1

|xj |p




1/p

. (2)

If x is not sparse, it might be written in a basis Ψ, where

it has a sparse representation. Examples of basis are spikes,

B-splines, wavelets, among other possibilities. Signal x in its

new representation becomes sparse or compressible α.

x = Ψα. (3)

Given a N dimensional S sparse signal x, and a measure-

ment matrix AM×N , it is possible to maintain the information

from the S components of α, by y = AΨα = Ax. In CS, to

use a sub-Nyquist rate, M < N .

Coherence between two pairs of orthobases is defined (the

restriction to pairs of orthobases is not essential [6]):

µ(A,Ψ) =
√
N max

1≤k,j≤N
|〈Akψj〉|. (4)

Random matrices are largely incoherent with any fixed basis

[6]. Incoherence between measurement matrix A and basis Ψ
is a sufficient condition in CS [7].

There are many properties concerning the design of mea-

surement matrices, one of these is that the minimum number

M of measures must obey M ≥ 2S, where S is the signal

sparsity. The reason is that sensing matrices should project

every two S-sparse vectors in distinct samples, thus every

set of 2S columns of A must be nonsingular [8]. However,

it is more reliable that CS will function properly if the

measurement matrix follows the restricted isometry property

(RIP). Matrix AΨ satisfy RIP of order S if there exists one

constant δS ∈ (0, 1) such that

294
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√

1− δS ≤ ||AΨα||2
||α||2

≤
√

1 + δS (5)

for every α such that ||α||0 ≤ S, that is, AΨ preserves the

norm of S-sparse vectors. Furthermore, if ||α||0 = ||α′||0 = S,

||α − α′||0 ≤ 2S, and AΨ satisfy RIP of order 2S, it also

preserves the euclidean distance between S-sparse vectors [5].

On the other hand, matrix A satisfy Ψ-RIP if there is a

constant δS ∈ (0, 1) such that

√

1− δS ≤ ||AΨα||2
||Ψα||2

≤
√

1 + δS (6)

for every α such that ||α||0 ≤ S. When Ψ forms an or-

thonormal basis, the properties of (5) and (6) are equivalent.

However, RIP and Ψ-RIP are slightly different concepts. In

the former, the norm preservation is guaranteed for all the

sparse vectors α, while in the latter the norm preservation is

guaranteed for all signals with a sparse representation x = Ψα
[5].

Many types of random matrices follow RIP, with few mea-

surements M . Unfortunately, it is an open problem whether

deterministic sampling matrices also follow RIP [8], [9],

[10]. Measurement matrices AM×N are random, chosen with

independent and identically distributed entrances such that:

E(A[m,n]) = 0 and E(A[m,n]2) = 1/M , from subgaussian

distributions, such as Gaussian, Rademacher and uniform. In

those cases, ||Ax||22 is concentrated close to ||x||22 and if M
is greater than certain value, A follows RIP of order S (with

probability depending on a parameter). An analogous result is

found for matrices following the Ψ-RIP of order S [5].

There are many reconstruction algorithms for recovering

one signal that has passed through CS, but they are not trivial

since the matrix AM×N , when M < N , constitutes a system

with more unknowns than equations. The original problem is

related to the use of ℓ0-norm and is a nonconvex minimization

problem, with NP complexity. One alternative choice to solve

is shown in (7), called the ℓ1-minimization problem or basis

pursuit [7], [6], [11]. The ℓ1-norm is a measure that when used

in optimization problems tends to find solution over the axes,

which is equivalent to finding sparse solutions [12], [13]. This

characteristic is well-suited for the problem in hand.

min
x̃∈RN

||x̃||1 subject to AΨx̃ = y. (7)

Generically, recovery algorithms can be classified as:

• Greedy algorithm: recovers the signal each step by mak-

ing locally optimal choices;

• Convex relaxation algorithms: solve convex problems;

• Combinational algorithms: rapid reconstruction through

group testing.

CoSaMP (compressive sampling matching pursuit) is a

greedy algorithm that utilizes ideas of combinational algo-

rithms to increase its speed [8]. CoSaMP was chosen for

recovering signals in this work because of its availability in

the toolbox from reference [5].

III. DISCRETE PROLATE SPHEROIDAL SEQUENCES

In this section we present Discrete Prolate Spheroidal

Sequences - DPSS and how they can form a sparsifying

basis. DPSS are useful for projecting digital filters, also in

pulse shaping, secure communications and in phase amplitude

modulation (PAM) [14].

Consider the amplitude spectrum X(f) =
∞
∑

n=−∞

xne
j2πfn

associated with a complex sequence xn. It is possible to

associate an energy value to an indexed sequence limit:

E(n1, n2) =

n2
∑

n=n1

|xn|2, (8)

as also to associate this to spectral amplitude:

xn =

∫ 1/2

−1/2

X(f)e−j2πfndf, n = 0,±1, . . . . (9)

According to Parseval’s theorem, one can also write:

E =

∞
∑

n=−∞

|xn|2 =

∫ 1/2

−1/2

|X(f)|2df. (10)

It is said that xn is bandlimited with bandwidth W if the

spectral amplitude of the sequence xn vanishes for W < |f | ≤
1/2, where W < 1/2 is a positive number. Analogously, given

two integers n1 ≤ n2, the sequence xn is time-limited if it

vanishes when n < n1 or n > n2.

Except for the trivial all zero sequence, it is known that it

is impossible to have sequences both time- and bandlimited,

simultaneously. It is plausible to ask, however, how near to

time-limited can a bandlimited sequence be, or what is its

maximum possible concentration:

λ =
E(N0, N0 +N − 1)

E(−∞,∞)
=

N0+N−1
∑

n=N0

|xn|2

∞
∑

n=−∞

|xn|2
, (11)

among all the other sequences bandlimited to W . In this sense,

the most concentrated sequence is proportional to a DPSS with

parameters N and W [15].

For each l = 0, 1, . . . , N − 1, the DPSS {v(l)n (N,W )} are

defined as the real solution for the system of equations:

N−1
∑

m=0

sin 2πW (n−m)

π(n−m)
v(l)m (N,W ) = λl(N,W )v(l)n (N,W ),

n = 0,±1,±2, . . .

normalized such that

N−1
∑

m=0

v(l)m (N,W )2 = 1,

N−1
∑

m=0

v(l)m (N,W ) ≥ 0,

N−1
∑

m=0

(N − 1− 2m)v(l)m (N,W ) ≥ 0.
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The 0 < λN−1(N,W ) < · · · < λ1(N,W ) < λ0(N,W ) < 1
are the ordered eigenvalues of a differential equation that is

related to the prolate spheroidal wave functions [15].

A. DPSS Basis

Davenport [5] presents concatenated basis DPSS, each mod-

ulated for center Fi of certain frequency band ∆i, so as to

write:

Fi = −Bnyq

2
+

(

i+
1

2

)

Bband, i ∈ {0, 1, . . . , J−1}, (12)

where J = Bnyq/Bband, W = BbandTs/2, Ts ≤ 1/Bnyq,

and for each i, with fi = FiTs:

Ψi = [EfiSN,W ]k, (13)

where k indicates that the first k columns of the matrix were

used. Efi is the N ×N matrix given by:

Efi [m,n] = ej2πfim, if m = n,

and Efi [m,n] = 0, otherwise. SN,W is N × N matrix with

N DPSS vectors (constructed with parameters N and W ) as

columns.

The multiband DPSS basis is written concatenating all Ψi:

Ψ = [Ψ0Ψ1 . . . ΨJ−1]. (14)

Matrix Ψ has size N × kJ .

IV. SIMULATIONS

This subsection compares the performance of CS when

using DPSS, DFT (N ×N ) or trig prolates as basis. The re-

construction algorithm is CoSaMP, using the software Matlab

and the toolbox of reference [5]. First simulation compares

the use of the DFT basis and the DPSS basis. Sampling time

is supposedly Ts =
1

Bnyq
and the number of possible bands is

J =
Bnyq

Bband
= 256. For each k value considered, D = kJ and

ΨN×D is the basis defined in (14). The half digital bandwidth

parameter is set to W = BbandTs

2 = 1
512 and there will

be considered sample vectors of size N = 1024, so that

2NW = 4. The multiband signals are generated from K = 5
random bands, from J possibilities, and made by adding 50

exponentials within each band of random frequencies, not

aligned with the “Nyquist grid”. The results are given by the

signal to noise ratio (SNR):

SNR = 20 log10
||x||2

||x− x̂||2
dB,

where x is the original signal, x̂ is the reconstructed signal

by the algorithm CoSaMP. The measurement matrix was

Gaussian, with dimensions M ×N , where M = N/2.

Figure 1 shows the mean SNR over 50 trials when the

number of columns of each Ψi modulated DPSS basis is

varied. It is visible that reconstruction using DFT basis stays

almost the same when this number varies, as expected (because

we did not change the DFT basis). However, it is clear from

simulations that when Ψ is an overcomplete basis, that is,

when each Ψi is constructed using more than 2NW DPSS
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Fig. 1. SNR comparison between reconstruction using DFT and DPSS basis.
The parameter k

′ of the number NWk
′ of columns used in the basis was

varied and the resultant mean SNR over 50 trials was calculated.

columns as vectors, there are far better results in reconstruc-

tion.

A second simulation compares the use of the DPSS with

small number of vectors as basis, the use of DPSS as an

overcomplete basis and trig prolates as basis. The ability to

accurate and rapidly compute DPSS is important specially for

implementation of multitaper approach to spectral estimation.

Some of the methods to generate DPSS are: from the defining

equation, from inverse iteration, from numerical integration

and from tridiagonal formulation. There are also substitutes

for DPSS, which are more easily computed, when NW =
2, 3, or 4, called trig prolates [16]. However, trig prolates

are not suited for applications with CS, at least when using

the CoSaMP algorithm for reconstruction, since the easily

computed ones actually give a small number of column vectors

(maximum NW + 1 columns), and thus cannot compose the

overcomplete basis that enables better performance.

We compared the performance of DPSS basis, with only

k = NW +1 columns, and the basis using trig prolates, when

NW = 4, N = 1024. Simulations were made with parameters

similar to those of previous simulation, with multiband signals

made by adding 50 exponentials in each of K = 5 active bands

from J = 128 possible bands and measurement matrix was

also Gaussian (N/2×N ). Figure 2 shows one example where

recovered signals were very similar - which was a consistent

result - but they were not very similar to the original one. The

mean SNR over 50 trials when using the DPSS basis with

column size NW + 1 = 5 was 4.09dB, and when using trig

prolates it was 4.06dB, practically the same. When using the

same parameters but with an overcomplete basis, with column

size 8NW , the mean SNR rises to about 205dB, which is a

much better result. Another example shows the comparison

between original signal and the recovery signals when the

three different bases were used, in Figure 3.
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Fig. 2. One example comparison between original signal and reconstructed
signals, when trig prolates or DPSS bases were used, in time domain.
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(a) Signals in total duration
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(b) Zoomed signals

Fig. 3. One example comparison between original signal and reconstructed
signal, when trig prolates, DPSS or DPSS overcomplete bases were used. The
blue curve of the original signal is almost totally covered by the reconstructed
signal when DPSS overcomplete basis is used (black curve).

V. APPLICATIONS

There has been application of CS jointly with DPSS not

only in telecommunications as also in medicine. Reference

[17] applies the modulated DPSS to accelerometry signal,

which are useful in medicine. Dysphagic patients (i.e., patients

suffering from swallowing difficulty) usually deviate from

the well-defined pattern of healthy swallowing. Swallowing

accelerometry employs an accelerometer as a sensor during

cervical auscultation. CS is necessary since there is a large vol-

ume of redundant samples by continuous monitoring. The use

of modulated DPSS, there is, of a basis Ml(N,W,Fm;n) =

ej2πFmnv
(l)
n (N,W ), where v(l)(N,W ) is a DPSS, resulted

in accurate representations of the signals with about 50% of

Nyquist samples.

In telecommunications, there is the development of a wide-

band compressive radio receiver (WCRR) architecture and

algorithmic approach, for a WCRR that performs processing

such as filtering and detection entirely in the compressive

domain. Specifically, there is one of the radio’s component

that involves the interference calculation and filtering, with a

projection matrix computed such that the spectral components

of the interfering signal lie in its nullspace [18]. The model

interference is made with DPSS. There are also applications

for a project of radars using the compressive approach, where

the procedure for nulling the interfering signal involves again

the computation of DPSS [19]. Finally, there is basis expansion

models using DPSS, with specific combination of DPSS and

DFT basis functions, which yields functions that are still

effectively zero outside an index range but, within that interval,

preserve the sparsity obtained with the DFT basis [20], in

the context of the application of CS to the estimation of

doubly selective channels within pulse-shaping of multicarrier

systems. The combination of DPSS and DFT bases yields

superior performance to the DFT pure basis alone, especially

at high SNR.

VI. CONCLUSION

We have studied and tested the use of a new basis, that

utilizes DPSS, to sparsely represent multiband signals. We

have compared the recovery of signals that passed through

CS using CoSaMP algorithm, with both DFT and modulated

DPSS bases, where the latter has improved performance over

the former when the latter is overcomplete. We have tested

trig prolates as basis and noted that they are not suited for

substituting overcomplete DPSS basis, in the context of CS,

with CoSaMP reconstruction. There is application of DPSS

basis in medicine, and joint CS and DPSS applications are

present in telecommunications, where we can cite radar and

radio’s architecture, as also in multicarrier systems. Despite all

the cited applications, the sophisticated methods to generate

DPSS leave this great basis still underused for CS implemen-

tation (and, unfortunately, the simpler trig prolates do not help

either).
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