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Semidefinite Relaxation for Large Scale MIMO
Detection
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Abstract— The semi-definite relaxation (SDR) is a high perfor-
mance efficient approach to MIMO detection especially for low
modulation orders. We focus on developing a computationally
efficient approximation of the maximum likelihood detector (ML)
algorithm based on semi-definite programming (SDP) for M-
QAM constellations. The detector is based on a convex relaxation
of the ML problem. A comparative analysis including the
performance-complexity trade-off of the SDR and the lattice
reduction (LR) aided linear MIMO detectors considering high
number of antennas is carried out aiming to demonstrate the
effectiveness of the SDR-based conventional and large scale
MIMO detector. SDR-MIMO detector can provide a close, and
under high order antennas cases, a better performance than the
LR-aided linear MIMO detectors.

Keywords— MIMO detection, lattice reduction, semi-definite
relaxation, convex optimization.

I. INTRODUCTION

The multiple-input multiple-output (MIMO) communication
systems have arise in many modern communication channels,
such as multi-user communication, cooperative networks and
multiple antenna channels. It is well known that the use of
multiple transmit and receive antennas offers substantial gains
to the system in comparison to the traditional single antenna
systems. In order to exploit these gains, the system should
be able to efficiently detect the transmitted symbols at the
receiver side with maximum of energy efficiency and minimal
complexity increment.

The optimal detection problem in the sense of minimum
joint probability or error for detecting all the symbols simul-
taneously is solved by the ML detector, which is known as
NP-hard [1]. It can be implemented by a brute force-search
over all of the possible transmitted vectors set, searching
for the one that minimizes the Euclidean distance from the
received vector, or using more efficient search algorithms,
i.e, the sphere decoder (SD) [1], [2]. However, the expected
computational complexity of the ML receiver, even when SD
is applied, is unpractical for many channel scenarios and
applications. Consequently, there has been much interest in
implementing sub-optimal or quasi-optimal MIMO detection
algorithms, such as the linear receivers, i.e, the zero-forcing
(ZF) and the minimum mean squared error (MMSE) MIMO
detectors [1].

One of the most promising quasi-optimal MIMO detection
strategies is the semi-definite relaxation (SDR), which pro-
vides a better bit error rate (BER) performance than the linear
and decision-feedback MIMO receivers [2]-[6] while holds
same order of complexity. The SDR attempt to approximate
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the solution for the ML problem using a convex program
that can be efficiently solved in polynomial time. The usual
approach of the SDR problem is first to formulate the ML
problem in a higher dimension and then relax the non-convex
constraints; such relaxation will result in a semi definite
program (SDP), for which there are efficient tools to obtain
solutions in polynomial time [7].

SDR was first proposed for signal detection problem on
binary/quadratic phase shift keying (BPSK/QPSK) constella-
tions, [3], [5], in which near-ML optimal performances were
empirically observed. These results suggest that at high signal-
to-noise ratios (SNRs), there is a high probability that SDR
will yield the true ML decision. Other result that motivates
the use of the SDR shows that many of the other conventional
detectors, such as the MMSE, are relaxations of the SDR and
are, therefore, inferior in performance ways [6].

The success of SDR in demodulating BPSK signaling
motivated its generalization to higher constellations, e.g., the
generalization to M -ary quadrature amplitude modulation (M -
QAM) signaling was intensively studied in order to conceive
high data rate systems. An SDR detector scheme for high-
order 16-QAM modulation was proposed in [4], while an
approximation of this detector was developed in [8], aiming
to achieve a high order 64-QAM constellation signaling.
Moreover, in [6], [9] the SDR detection problem is gener-
alized considering 49-QAM (¢ > 1) modulation orders. In
[10] a large scale SDR-based detector is proposed for fast
signal detection. The SDR problem is further reduced to the
sequential linear programming by adding new form of cutting
planes and column generation method. BER performance is
compared with linear ZF and MMSE MIMO detectors, as well
as the ML optimal detectors for 16 x 16 and 28 x 28 antennas.
In [11], authors suggest that the conventional SDR detector
in a multi-casting problem, where the transmitter is equipped
with a massive antenna array, the complexity of solving semi-
definite problem (SDP) directly obtained can be prohibitively
high. Authors devise the SDP in a dual domain, producing a
more computationally efficient solution. Also, they proposed
an iterative second-order cone programming solution that is
free from employing any randomization step.

This work analyzes the performance-complexity trade-off of
the SDR-MIMO detection algorithm, taking as reference both
linear sub-optimal and ML optimal solutions; low signaling
orders are adopted in the comparison with ML while high
order modulation schemes is adopted when comparing with
linear ZF or MMSE MIMO detectors.

II. PROBLEM STATEMENT

Considering a standard MIMO channel, the received signal
can be described by:

324



XXXIV SIMPOSIO BRASILEIRO DE TELECOMUNICACOES - SBrT2016, AUGUST 30 TO SEPTEMBER 02, SANTAREM, PA

y =Hs+n, Q)

where m; X 1 symbols s are transmitted simultaneously
through a channel which gain is represented by a n, X n,
matrix H and the additive noise n,. x 1 vector samples n. Each
element of the channel matrix H represents the channel gain in
the respective selected path; those gains are assumed known at
the receiver side and represented by a Rayleigh distribution.
The n; x 1 vector y represents the received signal samples
in each symbol period, formed by the symbols after passing
through the channel. It is also known that the noise vector
n, are samples of additive noise represented as circularly-
symmetric Gaussian distribution, n ~ CN{0,02I}, with
variance 2.

For the subsequent analysis and without loss of generality
we assume n, = mn;. The system model is fully defined
by complex variables; however, as we are focus on the
optimization procedures, for simplicity and computational
convenience, the complex variables are split into a double real-
value structure. So, rewriting the received MIMO signal in (1)
with imaginary and real part separately [1], [12]:

BON R SO mE) ),
Sivi  [S{H} R{H} | [S{s}] [3{n}

We considers a high order M-QAM modulation, where
the symbols are denoted by a complex number which
real and imaginary part are limited to =+ (\/M 71).
The structure of the complex set can be represented by

S=davjblabe VM -1, VM+3,...,VM— 1}}

For this modulation, the average symbol energy is given by:
2(M -1

B, - % 3)

A. Maximum Likelihood (ML)

The maximum-likelihood (ML) detector performs an ex-
haustive search over the whole set of possible symbols s; € S,
in order to decide in favor of the one that minimizes the
Euclidean distance between the received signal y and the
reconstructed signal Hs:

$ = argmin |y — Hs||”. 4)
seS

It is well known that the ML detector provides the lowest BER
performance of all MIMO detectors, but the search complexity
grows exponentially according to the number of antennas
and the number of symbols, leading to a M™” symbol set
combinations.

ITI. RELAXED ML CRITERION BY SEMIDEFINITE
PROGRAMMING

SDR is an efficient approximation tool for non-convex
quadratically constrained quadratic programming (QCQP)
problems and it has been shown to provide good approxima-
tion accuracy in the application of near-ML detection problem
with BPSK [3] and QPSK [4], [5] constellations. Like most
relaxation methods, SDR consists of three steps: a) relax
the feasible set of the original problem in order to ease the
solution of the relaxed problem; b) solve the relaxed problem;

c) convert the relaxation solution to an approximate solution
of the original problem.

The main idea behind the SDR approach applied to hard
decision MIMO detection is to first establish the finite con-
stellation requirement as a low-rank (in this case rank one)
constraint on a matrix whose diagonals belong to a finite
constellation. After that, those two constrains are relaxed to
a positive semi-definite constraint, which makes the resulting
problem convex and enables to use semi-definite programming
to solve it [13]. More specifically, we can rewrite the ML
problem posed in (4) as follows:

ly — Hs||” = s"H"Hs — 2y"Hs + [|y|*

5
= "L+ |yl )
H™H -H"y
a
where L= [yTH 0
Thus the § can equivalently be obtained through
§ = argmins? H Hs — 2y Hs (6)

seS

since ||y||> does not depend on § [2]. The function of the
above problem can equivalently be written as

H™H -HTy] [s

and thus by letting x = [§7 1]T the ML detection problem
can be solved examining the equivalent problem in the second
line of (5):
min xTLx
xERnt+1 (8)
st. 22=1 i=1,...,2n;+1

K2

where x; is the ¢th component of x.

Then, SDR utilizes x”Lx = tr(x’Lx) and X = xx7,
which lets the MIMO detection problem in (8) for high
modulation order be equivalent to

r)r(lin tr(LX)
Sy.t. dlag(X):e 9)

X(2nt+1,2nt+1) =1
X =0; rank(X)=1

where e is the vector of all ones.

We should observe that the optimization problem in (9) isn’t
convex yet* and it is equivalent to (4) in the sense that if the
solution of one is known the solution to the second can be
easily computed and vice-versa. However, the component that
makes (9) hard is more explicit than the constrains in (4). In
precisely way, the only difficult constraint in (9) is the rank
constraint, rank(X) = 1, which is non-convex, the objective
function and all the other constraints are convex in X, thus we
should drop the rank constraint in order to obtain the relaxed
version of the problem (4):

tr(LX)

s.t. diag(X) =-e

min
X
(10
X>=0

*Because of the rank constraint in X [2]
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where X > 0 means that X is symmetric and positive
semi-definite. The problem (10) is the SDR version for high
modulation order of (4) and the difference between them is
that the constraints on X has been replaced by X > 0.
The problem in (10) is a semi-definite program and standard
methods can be used to solve it in polynomial time [14].
The SDR problems can be handled very conveniently and
effectively by readily available (and free) software packages;
e.g, by using the convex optimization toolbox CVX [7], we
can solve (10) in MATLAB with it’s SDP mode.

Moreover, in order to solve a high modulation order problem
one constraint must be modified and these modification is
denominated as bound constraint SDR (BC-SDR). In this
work the method for high order modulation problem was
based on [8]. The convex optimization problem for high order
modulation cases is rewritten on it’s relaxed version as:

n%én tr(LX)
st. IpI>diag(X) > S.I
X (2n; +1,2n; + 1) = 1;

(1)
X*>0

where, I;, = minlog,(M)?; S; = maxlog,(M)? and I is
the 2n; + 1 dimensional identity matrix.

In the backstage, most convex optimization toolboxes han-
dle SDP with an interior point algorithm. Hence, the SDR
problem (10) can be solved with a worst case complexity [15]:

o <max {m,n}*n? log (1))

where, m is the number of constraints, n is the problem size
and € is a given solution accuracy. From the point of view of
the MIMO equalization problem, the variables m and n are
respectively represented by the number of transmit (n;) and
receive (n,) antennas.

From (12), the SDR complexity scales slowly (logarithmi-
cally) with e and most applications do not require a very high
solution precision; hence, simply speaking, we can say that the
SDR is a computationally efficient approximation approach
to QCQP problems, in the sense that its complexity is just
polynomial time. So, basically the SDR transforms a NP-
hard combinatory problem (4) into a polynomial time solvable
problem (10) and (11).

Furthermore, with the relaxation of the rank constraint, a
fundamental issue that can be found while using SDR is how to
convert a globally optimal solution X* of (10) into a feasible
solution x to (4). If X* is already rank one, then there is
nothing to do, and we can write X* = x*x*T | and x* will be
a feasible and optimal solution of (4). On the other hand, if
the rank of X* is larger than one we must extract from it, in
an efficient manner, a vector X that is feasible for (4) [15].

There are many heuristic ways to extract the rank one solu-
tion, however, even though the extracted solution is feasible for
(4), it is in general not an optimal solution. Different way to
extract the optimal solution from the feasible solution include
the rank one approximation and the Gaussian randomization.
In this work both rank one approximation and the Gaussian
randomization techniques have been deployed.

12)

A. Rank One Approximation

The rank one approximation consists in the most simple
technique to extract a solution x* to the non-convex problem
from the solution of the convex problem formulated, X*. With
this procedure it is assumed that every solution of X* is a
rank one solution. Algorithm 1 describes the steps to perform
the rank one approximation strategy; in step 3, the operator
slicer(-) is an approximation to the nearest constellation
value.

Algorithm 1 1-Rank Approximation SDR-MIMO Detection
Input: X*
Output: 3,
1: First we should take the eigen-decomposition of X*
X" = 22:1 )‘iQinT
2: Then we select the higher eigenvalue
I = argmax; \;
3: Take x* as the slicer on the eigenvector constellation
associated with the higher eigenvalue.
x* = slicer(q,)
4: The estimation of the transmitted symbol in real form is
obtained in x*, except form the last position of the vector
§L:Jf: i:1,...,2nt

B. Gaussian Randomization

The Gaussian randomization procedure is widely deployed;
e.g., [15] has demonstrated excellent near-ML results under
high number of antennas condition. Alternatively, in this work
the Gaussian randomization process based in [4] findings has
been used. Algorithm III-B describes such procedure.

Algorithm 2 Gaussian Randomization SDR-MIMO Detection
Input: X*, S,, L,
Output: s;

1: Cholesky Factorization at the SDR solution matrix:

X*=UTu

2: Let u; the i-th column of U

3: for i = to S, do

4: Generate a random vector r with a uniform distributed

over a unitary sphere of (2n; + 1) dimension.
5: Let xg be the:

T
ur
Xg; = slicer (T’>, 1=1,2,...,2n;+1
Usp, +1T

6: Calculate the the vector k as:

k; :ngLxg, 1=1,2,...,8
7: end for
8: xg = min(k)
9: 8§ =Xg, 1=1,...,2n,

IV. NUMERICAL RESULTS

In this section the bit error rate (BER) versus Ej/Ny
performance analysis under perfect channel estimation, dif-
ferent number of antennas and modulation order have been
considered. The performance and the complexity trade off is
an important parameter to be defined; hence, the computation
complexity was analyzed for each MIMO detector considered
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in this work. Furthermore, we have compared the SDR detector
under both estimation approaches with the lattice reduction
zero-forcing (LR-ZF) strategy. Specifically, on the SDR detec-
tion it was utilized the rank one approximation (SDR Rank
One) and the Gaussian randomization (SDR Rand) in order
to extract the feasible solution § from the globally optimum
X*. Numerical simulations are performed in uncoded spatial
multiplexing MIMO systems employing 16-QAM constella-
tions for different antenna configurations, e.g., 8 x 8, 16 x 16,
64 x 64 and 128 x 128 antennas. As demonstrated in the
following, the SDR Rand approach overcomes the SDR Rank
One approximation for medium/high SNR regions and low size
problems. On the other hand, when large MIMO was deployed,
an inversion on the BER performance behavior emerges: SDR
Rank One MIMO detector overcomes the SDR Rand MIMO
detector performance because of its low complexity.

A. BER Performance

Fig. 1 depicts the BER performance for the SDR MIMO
detector equipped with both rank approximation and gaussian
randomization estimations in comparison with the LR aided
linear detectors, namely LR-ZF and LR-MMSE. This proce-
dure was performed in a scenario with 16-QAM constellation,
ng = n, = 8 antennas (Fig. 1.a) and n; = n, = 16
antennas (Fig. 1.b), under non-line-of-sight (NLOS) Rayleigh
propagation channels plus additive white Gaussian noise.

¥
L

Bit Error Rate

—6— SDR Rank One

—6— SDR Rank One v
- + = LR-MMSE ‘¥

——LR-ZF

10°F| = + -LR-MMSE y
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- - SDR Rand =100

—v—LR-ZF
10| .| —e— SDR Rand S =

o
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Fig. 1. BER performance for 16-QAM SDR and LR-aided linear MIMO
detectors equipped with a) 8 X 8 antennas and b) 16 x 16 antennas

b) 16QAM 16x16 MIMO
i L

Note that both SDR approaches result in better performance
under low and high SNR regions; moreover, asymptotically
speaking both SDR approximations (Rank One and Rand)
tend to get close to each other but at the medium SNR
regions the SDR with randomization approach has 4dB gain
over the performance of the LR-ZF linear MIMO detector.
Fig. 1.b depicts the BER performance for n; = n, = 16
antennas under the same 16-QAM constellation order and
NLOS Rayleigh channel. As the number of antennas grows
the LR technique applied to MIMO systems makes them
more sensitive to noise, what makes the BER performance be
considerable in high SNR regions, where the additive noise
is negligible. When the SDR is analyzed a diversity gain was
directly observed. Moreover, a considerable performance gain
is achieved in high SNR region, something ~ 7dB higher.

As a conclusion, the achieved performance of both approx-
imations for the SDR detector in MIMO Rayleigh channels
improves progressively with the number of both transmit
and receive antennas. Such progressive improvement of SDR
Rank One, depicted in Figs. 2.a and 2.b, reflects directly
over the complexity the detection strategy. Finally for the
Rand approach, as the problem size grows, the number of
randomization samples, S,, must be incremented for better
BER performance. Indeed, under lower size problems, the
lowest value for S, on the SDR Rand algorithm have a better
BER in comparlson to the SDR Rank One approach

Bit Error Rate

107 F

—©— SDR Rank One
= # = LR-MMSE

—©— SDR Rank One
= + = LR-MMSE

—§— LR-ZF
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a) 16QAM, 64 x 64
L L L
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Average Eb/No,dB

Fig. 2.  BER performance for 16-QAM SDR and LR-aided linear MIMO
detectors equipped with a) 64 X 64 antennas and b) 128 x 128 antennas

D b) 16QAM, 128 x 128
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B. Complexity

According to [16], the algorithm complexity can be evalu-
ated in terms of the total number of floating-point operations
(flops), which one flop is defined as a unitary addition, sub-
traction, multiplication or division between two floating point
numbers. Using this methodology, the complexity of MIMO
detectors showed in Table I was determined, where n, = ny
is the number of receive and transmit antennas, respectively
and M is the modulation order in M-QAM constellation.

TABLE I
MIMO DETECTORS COMPLEXITY

Detector Total Complexity

ML M™ (4nyne + 2ny)

LR-ZF 8n3 +8n,n?+Tn2 +3n,n¢ —np+5n:+ fue (ne, p)

LR-MMSE 1613 + 8n,yn? + 10n? + 3nyn¢ — ny + 4ng +
S (ntap)

SDR Rank One En? + 12nt Bny 1

SDR Rand. nd +12n2 + 3§ By + 2+ (8nf + 26n; 4 10).5,

It was analyzed the complexity for the SDR by evaluating
the number of real operations for the rank approximation and
the Gaussian randomization, where S, is the adopted number
of generated symbols stored in vector k, that is used to choose
the nearest symbol from the original transmitted one. The
computational complexity for the SDR detectors under both
estimation techniques are placed near the order of O (nf),
with determines a cubic complexity for the SDR detectors.

It is important to emphasize that the order of constellation
doesn’t affect the complexity of both SDR algorithms. This
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characteristic is achieved by the limitations over the SDR
constraints; in the literature it is called bound constrained SDR
[8]. The specific procedure to determine the SDR detector
complexity is detailed in [17] specifying the procedure and
the auxiliary packages to perform the analysis.

For the ML approach it is simple verify in Table I that the
ML-MIMO detector is highly dependent on the constellation
order (problem dimension) what requires a huge number of
operations which makes it not feasible even for a low number
of antennas. On the other hand, the LR-aided linear MIMO
detectors approach the function f,; (n;) is an approximation
for the flop count on the LLL algorithm presented at the lattice
reduction procedure, this function turns out to become more
and more complex to solve as the problem when the problem
size gets higher which makes the BER for the LR-aided linear
equalizer to shown a worst performance in comparison with
the SDR approach. Moreover, a surface fitting for the flop
count on LLL algorithm was suggested by [12] and described
by fur (n:) = (a+c¢)n}, where a = 5.08 x 107% and ¢ =
8.396. Remembering that this fitting is valid only for n, = n,
arrays.

The number of complex operations for all those considered
MIMO detectors according to the number of antennas and
modulation order is depicted in 3D-graphic of Fig 3. The SDR
Rand algorithm is highly dependent on S, which makes the
complexity grows as higher as the number of samples. So as
the number of antennas grow, the complexity grows propor-
tionally leading to estimation errors. On the other hand, the
SDR Rank One approach is suitable for high sized problems
leading to the lowest complexity and achieving suitable and
the best BER performance for large number of antennas.

x 107
LR-ZF
37 » [ JLR-MMSE
[ ]SDR Rank One
2.5 [ |SDRRand (Sg=50)
[ JSDR Rand (S =100)
P [ |SDR Rand (S =250)
SDR Rand (S =500)

40
M-QAM

20

Number of antennas n.=n,

Fig. 3. Complexity of the SDR and LR-aided linear MIMO detectors versus
number of antennas and modulation order. For SDR Rand, S, ranges from
50 to 500.

V. CONCLUSION

Semi-definite relaxation (SDR) technique has been applied
to improve the MIMO detection performance in order to
achieve near-ML performance on Rayleigh channels. The per-
formance of SDR detectors and their respective computational
complexity in term of number of operations under uncorrelated
antennas were analyzed. As demonstrated, the SDR-MIMO

detectors outperform the linear techniques, specially when
the number of antennas increases. The lattice reduction aided
MIMO detectors have an inherent advantage over the most
sub-optimal detectors, showing better BER performance over
them, the SDR based detector outperform the LR based linear
MIMO detectors, specially when the number of antennas
increases substantially.

The complexity of the SDR based detectors was reduced by
a semi-definite relaxation, which offers similar performance
when compared with the conventional LR-aided linear MIMO
detectors. As a consequence, the SDR approach presents con-
siderable performance gain with a similar complexity, resulting
in a promising solution for high order modulation MIMO
systems equipped with a medium-high number of antennas.
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