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A Kalman Filter-Based Channel Estimator for
Generalized Group-Coherent Codes

Murilo Bellezoni Loiola, Renato Machado, and Dimas Irion Alves

Resumo— Neste artigo, prop̃oe-se um algoritmo semicego para
estimaç̃ao de canais MIMO adaptado para o uso de ćodigos
grupo-coerente. O desempenho da propostáe avaliado para
canais de comunicaç̃ao planos e variantes no tempo. O estimador
proposto utiliza um filtro de Kalman para rastrear o canal em
sistemas que empregam ćodigos grupo-coerente no transmissor.
Baseado nos coeficientes estimados, o receptor faz uma avaliação
de SNR instant̂anea para cada um dos2bf códigos disponı́veis no
transmissor e ent̃ao envia bf bits de informação ao transmissor
para que o mesmo realize a transmiss̃ao do próximo bloco de
dados com o ćodigo grupo-coerente mais adequado. Avaliaç̃oes
são feitas para transmiss̃oes sujeitas a diferentes condiç̃oes de
mobilidade e para diferentes nı́veis de quantizaç̃ao do canal de
realimentação. Resultados de simulaç̃ao revelam que o estimador
proposto proporciona um desempenho muito pŕoximo ao caso em
que a estimaç̃ao do canalé considerada perfeita e tamb́em que o
sistema baseado no filtro de Kalman proposto apresenta o mesmo
desempenho para diferentes nı́veis de quantização do canal de
realimentação.

Palavras-Chave— Códigos grupo-coerente; estimaç̃ao de canal
MIMO; filtro de Kalman.

Abstract— In this paper we propose a semiblind algorithm
for estimation of MIMO channel adapted for the use of group-
coherent codes. The performance of the proposed algorithm is
evaluated for Rayleigh, flat, and time-varying MIMO channels.
The proposed estimator considers a Kalman filter to track the
channel in MIMO systems that employ group-coherent codes at
the transmitter. Based on the estimated coefficients, the receiver
evaluates the instantaneous SNR for each one of2bf codes
available in the transmitter, and then sendsbf information bits
to the transmitter for the choice of the more appropriate code to
send the next block of data. Also, simulations are performedfor
transmissions under different mobility and quantized feedback
channel conditions. Simulation results reveal that the proposed
estimator provides a performance very close to the one that con-
siders a perfect channel knowledge and also that the performance
of the proposed kalman filter-based receiver is approximately the
same for different quantized feedback conditions.

Keywords— Group-coherent codes; Kalman Filter; MIMO
channel estimation.

I. I NTRODUCTION

Space-time codes are an effective and practical way
to exploit spatial diversity in multiple-input, multiple-
output (MIMO) systems, allowing the system to benefit from
transmit diversity without any power increment and with no
channel knowledge at the transmitter. Among the existing
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space-time coding schemes, orthogonal space-time block co-
des (OSTBCs) [1] are of particular interest because they
achieve full diversity at low receiver complexity. More spe-
cifically, the maximum likelihood (ML) receiver for OSTBCs
consists of a linear receiver followed by a symbol-by-symbol
decoder [1].

When a feedback channel from the receiver to the trans-
mitter exists so that the channel state information (CSI) is
known at the transmitter, MIMO communication systems can
obtain significant performance improvements [2]. In this case,
OSTBCs are not appropriate, since they can not improve
their performances from the extra feedback information. For
this reason, Machado and Uchôa-Filho [3] have proposed a
hybrid transmit antenna/code selection scheme that chooses
from a list of space-time block codes the best code to be
used with a subset of transmit antennas. This selection uses
the feedback information and the code selection is based on
the instantaneous error probability minimization criterion. This
idea has been refined later in [4].

Also, the so called group-coherent codes (GCCs) have been
proposed by Akhtar and Gesbert [5] forpNT transmit antennas
andp− 1 feedback bits, whereNT is the number of antennas
of the OSTBC considered for the GCC design. The transmit
diversity order achieved ispNT . In [6], the GCCs have been
extended to yield a better error performance, considering the
“trivial” code (one information symbol transmitted over one
transmit period via a single transmit antenna), with(p −
1) log2(r) feedback bits, wherer is some positive power of
2. Herein, this scheme is named generalized group-coherent
code (GGCC).

In all space-time coded schemes presented so far, the deco-
ders must have perfect channel knowledge to correctly decode
the received signals. Unfortunately, this channel information
is not normally available to the receivers; therefore channel
estimation techniques are essential for the system to work
properly. Also, when the channel is time-varying due to the
mobility of the transmitter and/or receiver, to changes in
the environment, or to carrier frequency mismatch between
transmitter and receiver, the channel estimation becomes more
challenging because, in these cases, the estimation algorithm
must be able to track the channel variations. One of the
most widely known approaches to channel tracking is Kalman
filtering [7].

The use of Kalman filters to estimate channels in ortho-
gonal space-time block coded systems is developed in [8]–
[11]. However, to the best of authors knowledge, there is no
work devoted to the study of the performance degradation of
GGCCs with imperfect channel information. For this reason,
we propose in this paper a channel estimator based on Kalman
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filter for systems employing GGCCs. We also analyze the
impact of such imperfect CSI to the performance of GGCCs.

The remainder of this paper is organized as follows. Section
II presents the system model. Section III details the proposed
channel estimator. In Section IV, simulation results are shown.
Finally, Section V outlines the main conclusion and final
remarks of this paper.

II. SYSTEM MODEL

A. Channel model

We consider a MISO system withNT transmit antennas
sending data blocks of lengthl to one receive antenna.
The channel is assumed to be flat and constant during the
transmission of each data block and can change between
consecutive blocks. According to the widely used wide-sense
stationary uncorrelated scattering (WSSUS) model [12], the
channel coefficients are modeled as dependent, zero-mean,
complex Gaussian random variables with time autocorrelation
function

E
[

hk,ih
∗
t,i

]

≈ J0(2πfDTs |k − t|), (1)

wherehk,i, i = 1, . . . , NT is theith element of vectorhk, J0

is the zero-order Bessel function of the first kind,fDTs is the
normalized Doppler rate andTs is the symbol duration.

Although exact modeling of channel dynamics by finite
length autoregressive (AR) processes is impossible because
the time autocorrelation function (1) is nonrational and its
spectrum is bandlimited, we can approximate the time evo-
lution of channel coefficients by low-order AR processes [9],
[13]. Therefore, following [9], [13], we herein approximate the
MISO channel variations by a first order AR process. Thus,
the time evolution of the channel is given by

hk = βhk−1 +wk, (2)

where β = J0(2πfDTs), wk is a vector of lengthNT

containing independent samples of circularly symmetric, zero-
mean, Gaussian excitation noise with covariance matrixQ =
σ2

wINT
, and σ2

w = (1 − β2)Pk, with Pk = E
[

|hk,m|2
]

,
m = 1, . . . , NT .

B. Orthogonal Space-Time Block Codes

In space-time block coding, the matrixCk represents a
mapping that transforms a block ofn complex symbols,
xk = [xk,1 xk,2 · · · xk,n]

T, to anl×NT complex matrix [1].
The space-time codewordCk is then used to transmit thesen
symbols inl time slots, achieving a rate ofn/l.

The matrix Ck is said to be an Orthogonal Space-Time
Block Code (OSTBC) if [1]: 1) all elements ofCk are linear
functions of symbols ofxk and their complex conjugates
and 2) for an arbitraryxk, the matrixCk satisfiesCH

kCk =
‖xk‖2INT

, whereINT
is the identity matrix of orderNT , ‖ ·‖

represents the Euclidean norm and(·)H denotes the conjugate
transpose of a matrix.

C. Generalized Group-Coherent Codes

OSTBCs are particularly attractive for practical implemen-
tations because of their low complexity maximum-likelihood
decoder and the fact that they achieve full spatial diversity
without any channel knowledge at the transmitter [1]. Howe-
ver, if any channel state information (CSI) is available at the
transmitter via a limited feedback channel, OSTBCs are not
the best choice because they can not use the extra information
provided by feedback to improve performance. In this case,
GGCCs can provide an improved performance.

As shown in [14], a GGCC designed forpNT transmit
antennas, whereNT ≥ 1 and p is an integer greater than
two, consists of a family of OSTBCs represented by the2p−1

matricesGk

Gk =
1√
p

[

Ck β1,kCk β2,kCk · · · βp−1,kCk

]

, (3)

whereCk is an OSTBC,βi = ejθi , θi ∈ [0, 2π) andk is a the
time index representing the transmitted block. Without loss of
generality, we can assumeθ0 = 0. The choice ofθi depends
on the information fed back by the receiver, and is made to
minimize the instantaneous error probability based on the CSI
[14].

If we stack the signals received by the single receive antenna
during time instants1, . . . , l, we can write these signals as

rk = Gkhk + nk, (4)

wherenk is a vector containing zero-mean, additive white
Gaussian noise (AWGN) samples with varianceσ2

n.

III. PROPOSEDCHANNEL ESTIMATOR

In order to formulate the problem of channel estimation
as one of state estimation, we need two equations named
process and measurement equations, respectively [7]. The
process equation describes the dynamic behavior of the state
variables to be estimated, while the measurement equation
presents the relationship between the state variables and the
observed system output. As we focus on channel tracking, we
can use (2) as the process equation andhk as the state vector.
The system output, in our case, is the channel outputrk in (4).
Therefore, our state-space model is given by

{

hk = βhk−1 +wk Process equation
rk = Gkhk + nk Measurement equation

(5)

Hence, from (5) the conventional Kalman filter is given by

ĥk|k−1 = βĥk−1|k−1 (6a)

Pk|k−1 = β2Pk−1|k−1 +Q (6b)

Kk = Pk|k−1G
H

k

(

GkPk|k−1G
H

k +R
)−1

(6c)

ĥk|k = ĥk|k−1 +Kk

(

rk −Gkĥk|k−1

)

(6d)

Pk|k = (INT
−KkGk)Pk|k−1, (6e)

where ĥi|j represents the channel estimate at time instant
i obtained from the signals received until timej, Pi|j is
the estimation error covariance matrix at instanti, computed
from the signals received until instantj, Q = σ2

wINT
is the
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covariance matrix ofwk, R = σ2

nINT
is the covariance matrix

of nk andKk is known as Kalman gain matrix.
To exploit the structure of any GGCC in the channel esti-

mator, let’s consider a GGCCGk designed forpNT transmit
antennas

Gk =
1√
p

[

Ck β1,kCk β2,kCk · · · βp−1,kCk

]

. (7)

By defining the weighting vectorbk as

bk =
1√
p

[

1 β1,k β2,k · · · βp−1,k

]

, (8)

it is possible to write (7) as

Gk = bk ⊗Ck, (9)

where⊗ represents the Kronecker product [15].
In order to simplify the notation, we defineGk = Gk.

Therefore, we obtain

Mk = GH

kGk = (bk ⊗Ck)
H
(bk ⊗Ck)

=
(

bH

k ⊗CH

k

)

(bk ⊗Ck) = bH

kbk ⊗CH

kCk,
(10)

where were used the properties of Kronecker products [15].
Remembering thatCH

kCk = ‖x‖2INT
for an OSTBC

and assuming an M-PSK modulation, the matrixMk can be
computed as

Mk = GH

kGk = bH

kbk ⊗ αINT
⇒ Mk = GH

kGk

= αbH

kbk ⊗ INT
,

(11)

with α = ‖x‖2 a constant representing the energy of uncoded
data block.

We start now to develop a Kalman channel estimator that
takes into account the structure of GGCCs, which is described
by (9) and (11). Using the fact thatR = σ2

nINT
, it is possible

to apply the matrix inversion lemma to the Kalman gain
matrix (6c) to obtain

Kk = Pk|k−1G
H

k

(

GkPk|k−1G
H

k +R
)−1

=Pk|k−1G
H

k

[

1

σ2
n

INT
− 1

σ4
n

Gk

(

1

σ2
n

GH

kGk +P−1

k|k−1

)−1

GH

k

]

=
1

σ2
n

Pk|k−1

[

GH

k − 1

σ2
n

GH

kGk

(

1

σ2
n

Mk +P−1

k|k−1

)−1

GH

k

]

=
1

σ2
n

Pk|k−1

[

INT
− 1

σ2
n

Mk

(

1

σ2
n

Mk +P−1

k|k−1

)−1
]

GH

k .

(12)

Employing the matrix inversion lemma once more, it is
possible to write the inverse matrix in (12) as

(

1

σ2
n

Mk +P−1

k|k−1

)−1

=

Pk|k−1−
1

σ2
n

Pk|k−1

(

1

σ2
n

MkPk|k−1 + INT

)−1

MkPk|k−1.

(13)

By using (13), (12) can be written as

Kk = AkG
H

k , (14)

whereAk is given by

Ak =
1

σ2
n

Pk|k−1

{

INT
− 1

σ2
n

MkPk|k−1 [INT
−

1

σ2
n

(

1

σ2
n

MkPk|k−1 + INT

)−1

MkPk|k−1

]}

. (15)

Replacing (14) into (6d) results in

ĥk|k = ĥk|k−1 +Kk

(

rk −Gkĥk|k−1

)

= ĥk|k−1 +AkG
H

k rk −AkG
H

kGkĥk|k−1

= ĥk|k−1 +AkG
H

k rk −AkMkĥk|k−1

= (INT
−AkMk) ĥk|k−1 +AkG

H

krk,

(16)

and using (6a)

ĥk|k = β (INT
−AkMk) ĥk−1|k−1 +AkG

H

k rk. (17)

Finally, replacing (14) into (6e) results in

Pk|k = (INT
−KkGk)Pk|k−1 =

(

INT
−AkG

H

kGk

)

Pk|k−1

= (INT
−AkMk)Pk|k−1.

(18)
By defining

Bk = INT
−AkMk, (19)

and gathering (6b), (14), (17), and (18), we obtain the Kalman
channel estimator for GGCC systems

Pk|k−1 = β2Pk−1|k−1 +Q (20a)

Ak = 1

σ2
n

Pk|k−1

{

INT
− 1

σ2
n

MkPk|k−1 [INT
− (20b)

1

σ2
n

(

1

σ2
n

MkPk|k−1 + INT

)−1

MkPk|k−1

]}

Bk = INT
−AkMk (20c)

ĥk|k = βBkĥk−1|k−1 +AkG
H

k rk (20d)

Pk|k = BkPk|k−1 (20e)

It is worth noting that the conventional Kalman filter equati-
ons in (6c)–(6e) depend on the transmitted symbols contained
in matrix Gk. However, in the Kalman filter exploiting the
structure of GGCCs, only the channel estimate update equa-
tion (20d) has an explicit dependance on the transmitted and
received signals. All other equations depend only on parame-
ters of the system, such as the prediction error covariance
matrix Pk|k−1, the varianceσ2

n of the measurement noise
and the code used. Hence, it is possible to compute (20a)–
(20c) and (20e) off-line, i.e., even before the beginning ofthe
data transmission, which could help in the reduction of the
computational burden during the execution of the algorithm.

IV. SIMULATION RESULTS

In this section we present some simulation results to il-
lustrate the performance of the proposed channel estimation
algorithm. The results are obtained through computer simula-
tion and are expressed in terms of bit error rate (BER)versus
SNR (γ0). In all simulations we use BPSK modulation and
consider a wireless communication scheme with two transmit
antennas at the transmitter and one receive antenna at the
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Fig. 1. BER performance forfDT = 0 – no time varying.

receiver. Before any data is transmitted, the symbols are coded
with the “trivial” group-coherent codes. We insert 250 training
codewords for every 750 GGCC data codewords. We assume
the receiver operates in decision-directed mode, where after
the end of the training sequence, the channel estimator employ
the decisions provided by the space-time decoder. Note that
these decisions are based on the channel estimates generated
by the estimation algorithms in the previous iteration. The
transmission rate isT = 1Mb/s and we consider a car-
rier frequency of 1.9GHz. Assuming these parameters, we
simulated three conditions of mobility: i) normalized Doppler
frequencyfDT = 0 (time-invariant); ii) normalized Doppler
frequencyfDT = 0.0015 (v = 60 Km/h); iii) normalized
Doppler frequencyfDT = 0.0045 (v = 120 Km/h). For
each mobility condition we simulated two different quantized
feedback scenarios:bf = 1 andbf = 2 feedback bits. We also
suppose no spatial correlation between the transmit antennas.
The simulation results, presented in the sequel, representthe
average behavior of 10 channel realizations1.

Figure 1 compares the BER× SNR performance of the
proposed semiblind Kalman filter-based channel estimator to
the perfect channel state information forfDT = 0 (no time
variation), bf = 1, and bf = 2. As we can observe, the
proposed estimator provides an error performance very close to
the one using perfect channel knowledge. And, in both quan-
tized feedback scenarios, the KF channel estimator presents
practically the same loss of performance when compared to
the perfect channel estimator.

Figure 2 compares the BER× SNR performance of the pro-
posed KF channel estimator to the perfect channel knowledge
for fDT = 0.0015, bf = 1, andbf = 2. Contrasting Figures
1 and 2, we see that, forbf = 1 or bf = 2, the KF channel
estimator presents practically the same loss of performance
when compared to the perfect channel estimator. The BER

1Resulting curves are not very smooth because of the small number of
channel realizations.
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Fig. 2. BER performance forfDT = 0.0015.
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Fig. 3. BER performance forfDT = 0.0045.

performance loss due to mobility is not observed here because
the simulations were ran for only ten channel realizations.

Looking at Figures 1–3, it is evident the performance losses
of the proposed algorithm because of the no-relative mobility
(v = 0km/h) between transmitter and receiver. This occurs
because the KF algorithm is better adapted for time-varying
channels. On the other hand, observing the results forbf = 1
and bf = 2 feedback bits, it is clearly noticeable that the
performance of the proposed kalman filter-based algorithm is
approximately the same in both conditions of feedback use,
suggesting that the use of the proposed estimator could be
applied in others space-time systems with quantized feedback
channel.

V. CONCLUSIONS ANDFINAL REMARKS

In this paper we proposed a Kalman filter-based channel es-
timator for generalized group-coherent codes in Rayleigh,flat,
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and time-varying MIMO channels. The proposed algorithm,
based on the kalman filter, is able to track the channel coeffi-
cients of flat, and time-varying MIMO channels. The proposed
algorithm is based on the channel estimator presented in [10]
and adapted for generalized group-coherent codes applications.
Simulation results reveal that the BER performance of the
GGCC codes when we consider the proposed Kalman filter-
based channel estimator, under different Doppler conditions,
is very close to the one that assumes a perfect channel state
information, indicating that the proposed KF estimator hasa
good tracking robustness. Moreover, as we could observe in
all figures, the KF channel estimator presents practically the
same loss of performance forbf = 1 and bf = 2, suggesting
that the proposed estimator could be used in others MIMO
systems with quantized feedback channel.

ACKNOWLEDGEMENT

This work has been supported, in part, by the Brazilian
Research Support Foundation of the State of Rio Grande do
Sul (FAPERGS) and FAPESP.

REFERENCES

[1] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-Time Block
Codes from Orthogonal Designs,”IEEE Transactions on Information
Theory, vol. 45, no. 5, pp. 1456–1467, July 1999.

[2] G. Caire, G. Taricco, and E. Biglieri, “Optimum power control over
fading channels,”IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 31 468–
1489, July 1998.
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“Linear Dispersion Codes for Limited Feedback Channels with Feed-
back Impairments,”IEEE Journal of Communication and Information
Systems, vol. 01, pp. 1–12, April 2011.

[7] D. Simon, Optimal State Estimation - Kalman, H∞, and Nonlinear
Approaches. John Wiley and Sons, 2006.

[8] Z. Liu, X. Ma, and G. B. Giannakis, “Space-Time Coding andKalman
Filtering for Time-Selective Fading Channels,”IEEE Transactions on
Communications, vol. 50, no. 2, pp. 183–186, February 2002.

[9] B. Balakumar and S. Shahbazpanahi and T. Kirubarajan, “Joint MIMO
Channel Tracking and Symbol Decoding Using Kalman Filtering,” IEEE
Transsactions on Signal Processing, vol. 55, no. 12, pp. 5873–5879,
December 2007.

[10] M. B. Loiola and R. R. Lopes, “Estimação semicega de canais com
correlação usando filtro de kalman e códigos espaço-temporais,” in
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