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Damping Factor Analysis on Large Scale MIMO
Detector Based on Message Passing

Alex Miyamoto Mussi and Taufik Abrao

Abstract— A message passing detector based on belief propaga-
tion (BP) algorithm for Markov random field (MRF) graphical
model, named MRF-BP, is analysed under large scale MIMO
scenarios. The contribution of this work consists of the analysis
of message damping method, applied to such MRF-BP detector.
A damping factor variation under different number of antennas
configuration and SNR regions is considered; BER performance
and computational complexity are evaluated over different sce-
narios. Numerical Results lead to a great performance gain
with message damping with no extra computational complexity,
although with low number of antennas the damping factor value
needs carefully be chosen. Besides, based on the proposed analysis
an optimal value for the damping factor is evaluated for different
number of antennas scenarios.

Keywords— Low complexity MIMO detector; message passing;
damping messages; Markov random fields; graphical models.

I. INTRODUCTION

Recently, it has been proposed and analyzed communication
structures that use tens to hundreds of antennas in transmission
and reception of signals, termed large-scale MIMO (LS-
MIMO) structures, and also called massive MIMO or full
dimension MIMO. Such structures hold the same benefits as
conventional MIMO, however, in large-scale. More properly
LS-MIMO is defined as a transmission/reception design using
typically several tens or even hundreds of antennas in at least
one of the communication terminals, usually in the BS [1], [2].
The reduced dimensions of user equipments (UEs) suggests a
single antenna arrangement in each UE; on the other hand, a
huge amount of the antennas is installed in each BS. In an
asymptotic model, an infinite number of antennas at the BS
is assumed in a LS-MIMO scheme, resulting in paramount
advantages: a) effects of noise background and fast fading
channel disappear; b) the transmission rate and the number of
UEs become independent of cell size; c) spectral efficiency
becomes independent of the system bandwidth; and d) power
required for transmission of bit tends to zero [3].

However, these advantages are fully achieved since this
unlimited number of antennas at the BS meets a fixed number
of UEs. These results become very interesting in scenarios
with very erroneous channel estimates due to the high noise
power (very low SNR): a sufficient increase in the number of
BS antennas in a LS-MIMO system is capable of mitigating
harmful effect of error in the channel estimation. On the other
hand, in multicellular LS-MIMO systems the use of training
pilot sequences for channel estimation purpose imposes a
intercellular interference in different cells. The problem is

Alex Miyamoto Mussi, PhD student at EPUSP — University
of Sdao Paulo and Professor at Federal Institute of Parana,
Assis Chateaubriand, Brazil, e-mail: alex.mussi@ifpr.edu.br;

Taufik Abrdo, Department of Electrical Engineering, State University
of Londrina, Brazil, e-mail: taufik@uel.br

called pilot contamination, persisting even in asymptotic BS
antennas scenarios [3].

The main advantage achieved with the LS-MIMO scheme
refers to high capacity/spectral efficiency [3], [4]; however,
with a high number of antennas at BS, the computational
complexity of data detection tend to grow proportionally. In
this sense, a low computational complexity detector emerges
as an essential requirement in LS-MIMO systems, still de-
veloping key role to reap the benefits of their high spectral
efficiencies. Many low complexity detection procedures for
LS-MIMO has been proposed in recent literature, including
LS-MIMO detectors based on a) local neighborhood search,
such as likelihood ascent search (LAS) algorithm [5], and
reactive tabu search (RTS) algorithm [6]; b) promising belief
propagation (BP) based algorithms, such that LS-detectors
inspired in graphical models, as factor graph (FG) [7] and
Markov random field (MRF) [8].

BP based detectors have demonstrated a near optimal per-
formance in LS-MIMO scenarios with low computational
complexity [9]. Moreover message passing (MP) algorithms
based on BP has been reported, in recent literature, as a
promising detection procedure in single-carrier spatial modula-
tion LS-MIMO systems [10]. In some situations, BP algorithm
may fail to converge, and if it does converge, the estimated
marginals may be far from exact [11]. However, there are
several methods in the literature to improve the convergence of
BP algorithm, including message damping method [12], [13]
and double loop methods [14], [15]. In this work, graphical
models and BP procedures are deployed to aid the efficient
detection in LS-MIMO systems.

A. Graphical Models

GMs are graphs that indicate inter-dependencies between
random variables [16]. Distributions that exhibit some struc-
ture can generally be represented naturally and compactly
using a graphical model, that is the case of distributions of
interest in MIMO systems (e.g., vector of received symbols).
The graphical model structure often allows the statistical
distribution of interest to be used effectively for inference, i.e.,
answering certain questions of interest using the distribution
[17]. Three basic graphical models widely used to represent
statistical distributions include Bayesian belief networks [18],
Markov random fields [19], and factor graphs [20].

A MRF is an undirected graph whose vertices are ran-
dom variables. The variables are such that any variable is
independent of all the other variables, given its neighbors.
For instance, a V-BLAST MIMO system can be conveniently
represented as a MRF with a node for every symbol. Since
every transmit antenna is used to transmit a separate symbol,
there are NV; nodes in such a graph. Since every transmitted
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symbol interferes with every other transmitted symbol in V-
BLAST, the graph is fully connected.

B. Belief Propagation

Belief propagation (BP) is a technique that solves proba-
bilistic inference problems usually implemented in graphical
models. BP is a simple, yet highly effective, procedure that
has been successfully employed in a variety of applications
including computational biology, statistical signal/image pro-
cessing, data mining, etc. The BP algorithm is now widely
recognized an efficient tool that can be used to solve several
problems, including communications problems as well [16].
The goal is to detect a hidden input (e.g., transmitted symbol
in MIMO systems) from its observed output (e.g., received
signal in MIMO systems). The system can be represented
as a graphical model and the detection of the system input
is equivalent to carry out inference on the corresponding
graph. More precisely, BP is a procedure used to compute
the marginalization of functions by passing messages on a
graphical model [17]. Due to its simplicity and efficiency, BP
is the most common strategy adopted to implement message
passing principle. Other message passing algorithms can be
adressed as generalized distributive law (GDL) [21] and sum-
product algorithm [20].

Due to the applicability and success of BP in LS-MIMO
detection [8], [9], [22], [10], a BP detector based on a MRF
graphical model is considered in this work. Furthermore,
message damping (MD) method is applied and a bit error rate
(BER) performance x damping factor analysis with different
antennas configurations in various signal-to-noise ratio (SNR)
scenarios is developed in order to evaluate an optimal damping
factor value, pointed as the main contribution of this work.

This paper is organized as follow. Section I presents the
adopted model for MIMO system, while MRF-based message
passing for LS-MIMO detection is discussed in section III.
Numerical results are analysed in section IV. Conclusion
remarks are provided in section V.

II. SYSTEM MODEL

Consider a V-BLAST MIMO communication system with
N, transmit antennas and NV, receive antennas, for simplicity,
the channel is assumed to be a frequency-flat fading channel,
characterized by the channel matrix H. The elements of H
are all independent complex Gaussian random variables with
zero mean and unit variance. Let x be the N; x 1 vector
corresponding to the BPSK symbols transmitted over the
N; transmit antennas, z € {—1,+1}"t. The additive white
Gaussian noise (AWGN) at any receive antenna is assumed
to be a complex Gaussian random variable with zero mean
and variance o2. The matrix model for the system under
investigation is

y=Hx+n (1)
where H represents an N, x N, fading coefficients matrix
following a Rayleigh distribution (for amplitudes) representing
NLOS (non-line-of-sight) communication and 7 is the noise
vector samples with:

Niey
o2 = ¢
Y

(@)

where ¢ denotes the average energy of the transmitted sym-
bols, Ny is the noise power spectral density which is equal
to the variance of n) entries; and 7y is the average SNR per
transmit antenna.

III. MESSAGE PASSING VIA MRF FOR LS-MIMO

This section presents a BP based detector that employs
message passing on an MRF [9]. Consider the system model
in Eq. (1). The maximum a posteriori (MAP) detector takes
the joint a posterior distribution:

p(xly, H) o< p(y|x, H)p(x) 3)
The MAP estimate of the bit z;, ¢ = 1, ..., Ny is given by

argmax  p(z; = aly, H) @
a € {—-1,+1}

T; =

whose complexity is exponential in N; [17].
Given x and H, y is a complex Gaussian random vector
with mean Hx and covariance o1, . Thus,

—|ly — Hx||?
202

Assuming that the symbols in x are all independent, also
necessary for a Markov random fields procedure [17], hence,
a priori probability for the transmitted symbol is given by

p(x) = Hp(m (6)

p(y|x, H) o< exp ( (5)

From Egs. (3), (5) and (6), the conditional probability
function can be written as:

p(xly, H) o~ 5oz (y—Hx)" (y—Hx) Helnp(ri)
o~ 6ﬁ(xHHHHx—2’R{xHHHy}) Helnp(xi) (7
Defining R = (J) H"H and z = (J5) H"y, Eq. (7) can be
rewritten as

p(xly, H) oc e™ i<y Rz Rzt edoi Rivizid TT exp (Inp(x;))

_ H efzclR{Rij}xj H eriR{Zi}+1nP($i) (8)
i<j i
where z; and R;; are the elements of z and R, respectively,
and R(-) denotes the real part of a complex number. Analyzing
Eq. (8), it is seen that the MRF of the MIMO system presents
pair-wise interactions with the potentials' defined by:

Vi j(zi, ;) = exp [~z R{ Ri; ;] ©)
¢i(xi) = exp [ziR{z} + Inp(z;)] (10

The values of ¢ and ¢ define, respectively, the edge and
self potentials of the MRF graphical model to which message
passing algorithm is applied to compute the marginal proba-
bilities of the variables. BP algorithm attempts to estimate the
marginal probabilities of all the variables by way of passing
messages between the local nodes.

A fully connected subgraph of an MRF is called a clique; the variables
in an MRF constrained by a compatibility function is known as a (clique)
potential.
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A message from node j to node ¢ is denoted by m; ;(x;),
and belief at node ¢ is denoted b;(z;), x; € {£1}. The belief
b;(x;) depends on how likely x; was transmitted. On the other
hand, m; ;(z;) depends on how likely that node j evaluates x;
was transmitted. The message from node 7 to a neighboring

node j is then given by:
H M q xz

Zcbz )i (i, 5) (11)
keN(i)\j

mi,;(x;)

where A (i) denotes the set of all nodes neighboring the
node i and N (i)\j denotes the same neighborhood, except
the node j. Eq. (11) actually constitutes an iteration, as the
message is defined in terms of the messages from other
nodes. So, BP essentially involves computing the outgoing
messages from a node to each of its neighbors using the local
joint compatibility function and the incoming messages and
transmitting them [17]. The algorithm terminates after a fixed
number of iterations.

A. Message Damping

The MD method can be used to improve the convergence
of BP algorithm. The messages to be passed are computed as
a weighted average of the message in the previous iteration
and the message in the current iteration [12], [13]. Thus,
the damped message to be passed from node ¢ to node j
in iteration ¢, denoted by m( )(xj) is computed as a convex
combination of the previous message and the current message
as:

m)(w;) = am{ (25) + (1 = a)m) ()

1,5
(t) (t—
1,9

where 7, ;(z;) and m; )(xj) denotes, respectively, the
current message in iteration ¢ and the previous message in
iteration ¢t —1, and o € (0, 1] is referred as the damping factor
(DF). This simple damping of messages has been shown to be
very effective in improving BP convergence and performance
[12]. As shown in numerical results section, considering
the LS-MIMO detection context, message damping method
can improve performance significantly, without increasing
the computational complexity. Furthermore, the analysis of
damping factor in different LS-MIMO configurations is the
main contribution of this work.

Damping of messages can be carried out in each iteration.
The final belief about the variable z; is computed as:

bi(w;) o< ¢i(w;) H m;i(2;)

JEN ()

(12)

13)

In the case of a coded system, the soft output of the algorithm
bi(x;) can be directly fed to the decoder. A pseudocode for
the MRF BP described above is listed in Algorithm 1.

IV. SIMULATION RESULTS

In this section the uncoded bit error rate (BER) performance
related to the MRF-BP algorithm for LS-MIMO detection
is evaluated through Monte Carlo simulations. The simula-
tions are performed for a V-BLAST MIMO configuration
and assuming that a perfect channel state information (CSI)
is available at the receiver side. For comparison purpose,
the BER performance of a single-input single-output (SISO)

transmission scheme operating in flat fading, as well as in
purely AWGN channels were included in several graphs. Table
I summarizes the main system and channel parameter values
deployed in this section. Also, the number of transmit antennas
per mobile user in all scenarios is fixed in Vy, = 1 antenna

Algorithm 1 MRF BP for LS-MIMO detection
1: Initialization
2 m”)(x;) = 0.5, p(a; = £1) = 0.5, Vi, j =1,..., N,
3 i) (2;) =05, Vi, j=1,...,N,
4 R=(%)H"H;z=(%)H"y
5: for =1 to N; do
6.
7
8

o ¢i(xi) = exp (wiR{z} + In(p(z:)))
: end for
: for : =1 to N; do

9: forj=1to Ny, j #ido

10: i j(wi, x5) = exp (—xiR{Ri j}z;)
11: end for

12: end for

13: Iterative update of messages
14: for t =1 to Z do

15:  Message calculation
16: fori=1to N; do
17: for j =1to N, j #1ido
~ (t t—1

18: ) (x5) o 32, i@ )i (@i, ;) Mrenn mi Y ()
19: Dampmg messages
20: m, D (2;) = am{7 ) (@) + (1 - a)ml’) (z))
21: Messages normallzatzon

t m, ()
22: mg’;(mj) = . J (f)J( ;)
23: end for
24: end for
25: end for

26: Belief calculation

27: for i =1 to N; do

28: bl(azl) o ()231(371) H JENG)

29: end for

30: Detection of data bits

31: @; = argmax b;(x;), Vi,j =1,..., N¢
z;€{£1}

32: Terminate

<I)(xl)

In Fig. 1 the BER performance of the implemented MRF-
BP algorithm is showed for various N; = N, = U antennas
configurations. Moreover, a number of iterations Z = 4 in BP
algorithm were adopted. From Fig. 1.a), one can conclude that
under few BP iterations, the LS-MIMO MRF-BP performance
tends to the SISO AWGN system performance when the
number of antennas increasing, achieving such performance
in medium SNR when N; = 500 antennas. Indeed, with
500 x 500 antennas configuration, the BER performance and
diversity gain achieved by MRF-BP detector is very close to
that of SISO AWGN bound leading to a conclusion that, in
such large antennas configuration, the performance of MRF-
BP detector reaches the asymptotic LS condition and an
increasing in N; = N,. would not result in a relevant perfor-
mance gain. From these results, it can be concluded that the
MREF-BP detector demonstrates promising BER performance
in large-scale MIMO systems. Fig. 1.b) shows the MRF-BP
detector with optimal DF value, evaluated from numerical
results presented in Figs. 3 and 4. The performance and
diversity gain with damping messages is noticeable in all
antenna configuration.
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Fig. 2 evidences the influence of the number of iterations
(Z) of BP algorithm on the BER performance at SNR = 10dB
without damping messages, i.e., adopting o« = 0. One can
notice the occurrence of a significant performance gain in
the first four iterations of Algorithm 1. Besides, with the
increasing number of antennas, the performance of MRF-BP
detector improves accordingly. For all antennas configuration
depicted in this graph, the performance gain occurs, mainly,
in the first four iterations, after that, there is no relevant
performance gain, i.e., no relevant information is carried out

in neighborhood messages.
TABLE 1

LS-MIMO SYSTEM AND CHANNEL PARAMETERS

Value
Uplink (UL)
N, € [20; 50; 100; 500]

Parameter
Link direction
# Rx antennas

# Mobile users U=N,

# Tx antennas (per user) Nty =1

# Tx antennas (total) Nt = U.Nyy

Channel type flat Rayleigh

Channel availability Perfectly known at receiver
Modulation order BPSK

# iterations MRF-BP 7 e {4,5}

10 " —k— SISO flat fading /10 '
—{— MRF-BP 20x20 ¢
—/\— MRF-BP 50%50 o
—O— MRF-BP 100x100

—k— SISO flat fading
—{J— MRF-BP 20x20 (a=0.10)
—/\— MRF-BP 50x50 (a=0.20)

10| —<— MRF-BP 200x200 4 107 ;| —O— MRF-BP 100x100 (a=0.20) \
—</— MRF-BP 300x300 4 —>%— MRF-BP 200x200 (a=0.20) X
MRF-BP 500x500 i —</— MRF-BP 300x300 (=0.20) T
— Y — SISO AWGN — Yt — SISO AWGN
107 r ‘ : i 10° :
0 2 4 6 8 10 0 2 4 6 10
SNR (dB) SNR (dB)
Fig. 1. BER performance of the implemented MRF-BP detector with various

N¢ = N, antennas and 4 BP iterations; a) no dampling messages and b) with
optimal DF value.

T T T T T T T T
—>¢— MRF-BP 50 x50

—[— MRF-BP 100% 100
—O— MRF-BP 150150

107 |

BER

4 . . . L L L L L
1 2 3 4 5 6 7 8 9 10
Number of iterations, Z

Fig. 2. BP iterations effect on the BER performance; SNR = 10dB.

10

Figs. 3 shows the message damping impact on BER per-

formance considering medium-high SNR regions. A MRF-BP
detector with message damping variation in the range 0 < o <
1 is considered for a) 20 x 20 and b) 50 x 50 antennas. For both
antennas configuration, one can notice that, the performance
gain with message damping increases in higher SNR regions;
in SNR equal to 6dB the performance gain with damping
(a # 0) is less than one decade; on the other hand, in the
scenario with SNR= 12dB the performance gain with message
damping is approximately 2 and 3 decades for Ny = 20 and
50 antennas, respectively. Specific conclusions regarding the
scenario @) N; = 20 antennas is that in higher SNR region, the
best damping factor, i.e., associated with the lowest BER, has
a lower value and tends be more responsive to « variations.
Looking at the implicit curve of SNR= 6dB, the performance
variation from 0.25 < o < 0.45 is negligible; in the case of
14dB, the BER performance degradation from o = 0.05 to
0.20 is more than one decade. Furthermore, the performance
becomes worse regarding no damping messages case (o = 0)
from a > 0.35 in SNR= 14dB; the same situation occurs from
a > 0.80 when SNR= 6dB. Therefore, the DF value needs to
be accurately chosen, specially in medium/high SNR regions.

SNR [dB
(48] 0.9

05 06 07 0.8

14 02 03 04
a) 0 01 Damping factor (at)
10"
107
@
TN
10
10°
6
SNR [dB]
0.2 '
9 0.1 Damping factor (a)
b) 0
Fig. 3. MRF-BP LS-MIMO performance, Z = 5, as a function of different

SNR scenarios and damping factor a: a) 20 x 20; b) 50 x 50 antennas

From Fig. 4, it is distinguishable that, when N, of LS-
MIMO system increases, e.g., from 20 x 20 to 100 x 100
antennas, the BER performance behaviour with damping factor
demonstrates constant (flat condition) at greater intervals of «.
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The same way that, with 50 x 50 antennas the performance
is flatter than 20 x 20 case (Fig. 3.a and 3.b). One can
conclude that, the difficult task to accurately choose the DF
value in small number of LS-MIMO antennas scenario, i.e.,
20 x 20, is relaxed with increasing number of antennas. Thus,
the application of message damping, specially in high SNR
region, is more suitable in LS-MIMO systems due to the flat
BER performance response to DF variation.

‘ |

BER

—O— MRF-BP (SNR ;=06 dB)
—¢— MRF-BP (SNR =07 dB)
—{— MRF-BP (SNR =08 dB)

MRF-BP (SNR ;=09 dB)

10 i i i i i 0 0 0 0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Damping factor (a)

Fig. 4. Variation of damping factor on the BER performance of a MRF-BP
100 x 100 considering different SNR scenarios; Z = 5.

A. Computational Complexity of MRF-BP LS-MIMO detector

The computational complexity is described in terms of
floating-point operations, which one floating-point operation
denotes the computational complexity of the real mathematical
operations: addition, subtraction, multiplication or division.
Table II describes the per-symbol computational complexity
involved in each step of MRF-BP algorithm. The overall per-
symbol complexity of the Algorithm 1 is about O(N?). It is
important to note that message damping does not increase the
computational complexity of the MRF-BP algorithm.

TABLE 11
COMPUTATIONAL COMPLEXITY OF MRF-BP ALGORITHM.

Procedure Algoritm 1 Per-symbol Complexity
R line 4 Ny, —1
Z line 4 Ny —1
¢, eq. (9) line 6 4
1, eq. (10) line 10 12Ny
Messages update  lines 15 to 25 (AN? +4N¢ —8) - T
Message damping line 20 Nit (negligible)

V. CONCLUSIONS

A detector for LS-MIMO systems based on message passing
MREF graphical model and BP algorithm was analyzed. More
specifically, message damping method impact on the BER
performance was evaluated and has demonstrated a promising
method for message passing detectors, specially in LS-MIMO
scenarios. Numerical results for the MRF-BP LS-MIMO de-
tector has demonstrated promising performance x complexity
tradeoff, since damping messages procedure just increases
marginally the overall computational complexity while provid-
ing a significant performance gain. Besides, under large scale
antenna scenarios, the DF value choose is facilitated due to
the flat BER performance response to « variation.
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