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Energy Consumption and Memory Footprint
Evaluation of RPL and CTP in TinyOS
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Abstract— One important issue addressed in Wireless Sensor
Networks research and standardization is routing among nodes.
While RPL, an IETF RFC, and CTP are two well-known
examples, they have distinct behavior. In order to select a routing
protocol, one need to understand the overhead introduced by
each routing protocol. We present an use case considering energy
consumption measurements of RPL and CTP, implemented on a
testbed based on TinyOS. We also compare energy consumption
estimation obtained from simulations running on COOJA with
real measurements from our testbed. Lastly, we present metrics
for several scenarios running both RPL and CTP.

Keywords— Wireless sensor networks, routing protocol, simu-
lations, overhead.

I. INTRODUCTION

Wireless Sensor Networks (WSN) have been used to support
several different applications, mainly related to monitoring,
detection and tracking. Nodes in a WSN are typically battery-
powered and resource constrained (i.e. limited amount of
memory, processing and communication), and communicate
through a multihop ad hoc network [2]. There is not a
unique definition for the Internet of Things (IoT), but most
of them agree that it is composed of devices capable of
sensing/actuation, communication and processing [11]. Thus,
WSN becomes a key technology for IoT.

WSN communication pattern was initially depicted con-
sidering sensors replying to sink queries, and thus Direct-
Diffusion and SPIN fit properly. Other communication patterns
would consider node to sink, and node to node communication.
Given the node to sink communication pattern, the following
trend in WSN deployments was tree-based routing, where the
sink becomes the tree root and receives all sensed data from
the nodes. Thus CTP (Collection Tree Protocol) [3] became a
de facto standard for TinyOS [5] applications.

Following the effort on standardizing and deploying IP ver-
sion 6 and the IoT discussion, IETF (The Internet Engineering
Task Force) created working groups to address the use of
IPv6 over IEEE 802.15.4 networks and related routing issues.
RFC 6550 - RPL: IPv6 Routing Protocol for Low-Power and
Lossy Networks describes a routing protocol that supports
traffic flows including point-to-point, point-to-multipoint (i.e.
from a sink to nodes), and multipoint-to-point (from nodes
towards a sink). Therefore, RPL could support different types
of applications with several communication patterns running
in a given WSN (or low-power lossy network - LLN).
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According to Ko et al. [6], RPL implementation for TinyOS
provides an efficient routing performance for the multipoint-
to-point traffic pattern that is comparable with CTP in terms
of protocol overhead and packet reception ratio. RPL imple-
mentation for TinyOS includes a 15-byte header while CTP
includes an 8-byte header [6].

Herberg and Clausen [4] present a comparative study of
LOAD and RPL with bidirectional traffic using ns2. Authors
claim that RPL and LOAD provide similar data delivery ratios,
but RPL incurs in more overhead while being more constrained
in the types of topologies supported. The main drawback in
this study is the use of IEEE 802.11 link layer, which provides
higher bandwidth than LLNs.

The main question that arises is how much overhead a
protocol that supports different communication patterns will
introduce. Another way to look at the problem is to answer
if following the IETF standard will be expensive in terms of
network and node resources.

This work presents a comparison between two main routing
protocols used on WSN. First we present energy consumption
measurements of RPL and CTP implemented on a testbed
based on TelosB and TinyOS, which are the first results of
this kind to the best of our knowledge. Second we compare
energy consumption estimates obtained from time spent in
each radio state through simulations running on COOJA [8]
with real measurements from our testbed. Third, we scaled
our testbed size using COOJA in order to estimate CTP’s
and RPL’s efficiency over large and dense networks, using as
parameters the data packets’ latency times and loss rates, the
rate between control packets’ number and the data packets’
number over the time, and energy consumption estimates.
Furthermore, we provide memory footprint of CTP and RPL
over our application.

The IEEE 802.15.4 standard includes provision for radio
duty cycling in its specification. TinyOS has a Low Power
Listening (LPL) mechanism implemented, which uses a wake
up routine according to a static and predefined duty cycle
period, keeping the radio off as much as possible. In order
to compare the energy efficiency in the motes, we estimated
it with and without LPL enabled for large networks.

This paper is organized as follows. Section II presents an
overview of CTP and RPL, while Section III presents our ex-
perimental methodology. Results are presented and discussed
in Section IV and we conclude the paper in Section V.

II. CTP AND RPL OVERVIEW

Collection Tree Protocol (CTP) [3] determines a tree from
leaf nodes to a (or multiple) root nodes. It starts with sink
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nodes (i.e. the ones configured to receive data) advertising
themselves as logical tree roots. Then nearby nodes replies,
assembling a set of routing trees to the sink. Each sensor
node replies only to the nearest root. Route constitution to
root nodes uses Expected Transmissions (ETX) [3] as routing
gradient, prioritizing routes with the lowest ETX values. Link
estimation in CTP design is used to evaluate the communi-
cation link between the neighbors [3]. CTP has the ability to
resolve routing inconsistencies by broadcasting beacon frames
periodically [3].

IPv6 Routing Protocol for Low-Power and Lossy Networks
(RPL) [12] is the IETF standard protocol for IPv6 routing
over multihop wireless sensor networks. It is a protocol
based on distance vector, using routing metrics to assemble a
Destination-Oriented Acyclic Graph (DODAG) rooted at the
border router. RPL is tree-oriented in the sense that one or
more root nodes in a network may constitute a topology that
trickles downward to the sensor nodes.

III. EXPERIMENTAL METHODOLOGY

The first experimental procedure involved the development
and implementation of an application using the available CTP
and RPL libraries for TinyOS [5] version 2.1.2. These libraries
were used to implement two versions of the same application,
differing only by the underlying routing protocol (CTP and
RPL). The purpose of the application is to send two predefined
bytes periodically (2s) from a source sensor node to the sink
node (root) over a multihop network. All nodes operate in
TinyOS Low Power Listening (LPL) mode.

The experimental multihop network (i.e. our testbed) con-
sists of a three-node topology in which there is a source, a
router, and a sink node; where source should not communicate
directly with the sink node. Given the lack of accuracy to
determine the radio range of the TelosB [7] motes and its
susceptibility to environmental noise, the three-node multi-
hop line-up was chosen to simplify the problem of network
topology definition with a real testbed. In order to control the
topology, the output power of CC2420 radio chip [1] available
on the TelosB was reduced to minimal (-25 dBm).

To perform the simulations mimicking our testbed with
TelosB devices running CTP and RPL on TinyOS, we adopted
COOIJA [8]. COOJA is a cross-level sensor network simulator
that adopt a hybrid approach, being able to simulate the
network level through a Java environment implementation
and the operating system level based on native sensor node
program, integrating them by using Java Native Interface. It
allows the use of the platform compiled code by emulating TI
MSP430 processor present on TelosB mote.

Roussel et al. [9] argue that studies that rely on COOJA
emulation to evaluate time-related performance on WSN have
a potential risk of suffering from inexact results due to the
timing inaccuracy related to delays during packet loading into
RF TX buffer in comparison to their experiments made on
physical motes. For the TelosB platform they present results to
RIOT and Contiki OSes, in which the most significant impacts
of the packet loading in the transmission timing are 57% and
13% respectively, and observed delays differences are 15%
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and 11% respectively. Performing a simple multiplication we
can conclude that the impact would be at most 8.6% for RIOT
and 1.4% for Contiki. However, even if the presented results
are correct, we consider that COOJA remains a relevant tool
to conduct this type of study, especially when the objective
is to compare protocols, since the delay would affect both
protocols in the same way. In addition, numerous hardware
and environmental variables (e.g. interference from different
sources and device temperature) may also affect studies that
adopt physical platforms, providing inaccurate results much
more difficult to reproduce and verify in comparison with
experiments using a simulator.

In order to select the most appropriate duty cycle we tested
four arbitrary TinyOS LPL sleep intervals in COOJA, aiming
to determine the less costly from the power consumption
perspective (i.e. smallest radio activity). Table I presents the
average time fraction of radio activity of the TelosB motes run-
ning the TinyOS CTP and RPL application (CtpTestApp and
RplTestApp, respectively) in a 10-minute COOJA simulation.
Given these data we selected 128 ms sleep interval.

TABLE I
FRACTION OF RADIO ACTIVITY FOR DIFFERENT DUTY CYCLES

Sleep Interval (ms) | CipTestApp | RplTestApp
64 11,05% 13,55%
128 8,26 % 12,33%
256 9,01% 13,79%
512 12,06% 18,19%

The memory footprint metrics considered for applications
and protocols are occupation of code memory and utiliza-
tion of volatile memory (RAM), obtained through the tools
MSP430-size and MSP430-ram usage, respectively. These
tools are part of compiler toolchain used to generate programs
for the TelosB sensor, the MSP430GCC [10].

The experimental procedure for the large scale networks
tests was also based on simulations performed on COOJA. For
these tests, we used the same CTP’s and RPL’s applications
mentioned before, changing the data packets’ contents from
the two predefined bytes to a four-byte message, containing
the sender device’s node ID and a counter. The data packets’
frequency were also changed from one at each 2s to one at
each 5s. All nodes, but the sink, were configured to send data
packets. The network parameters are shown in Table II.

TABLE I
NETWORK PARAMETERS

Parameter Value
Network topology Square grid
Grid distance parameter 20m

Grid size

Number of sinks

Sink position

Radio communication radius
LPL sleep interval

CTP trickle timer

RPL DIO trickle timer
network simulation duration

25 /49 / 64 / 81 motes
1

upper-left corner

30m

128 ms and none

128 ms to 512000 ms
256 ms to 262144 ms
5 minutes
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A. Testbed Energy Consumption Measurements

In order to obtain an exact measurement of energy con-
sumption and execution time, we used a measurement setup
in which direct measures were carried out on the TelosB
mote, executing the TinyOS [5] CtpTestApp and RpllestApp
applications. The digital multimeter Agilent 34401 A was used
to monitor the current flow at a sampling rate of 500 Hz, while
a precision power supply, Agilent E3631A, was configured to
supply 3V to the TelosB sensor. A General Purpose Interface
Bus (IEEE 488 standard) cable was used to connect the mul-
timeter to a computer running the software LabView, which
collects and records the measurement samples. Instantaneous
current gathered through the measurement setup was integrated
by a Matlab script using Simpsons method, and multiplied by
the constant voltage to obtain the energy consumption.

Our measurement setup has a limit of 50K current samples,
providing a 100 seconds measurement window, starting si-
multaneously with node’s boot process. We repeated the mea-
surement cycle 10 times for each node for each application,
summing up 60 data samples. Applications ran over TinyOS
with a 128 ms duty cycle, the less costly as in Table I.

B. Simulation-based Energy Consumption Calculation

Although COOJA cannot provide energy consumption val-
ues such as the multimeter, it supplies the total time the radio is
turned on (D,44i00n), as well as the fraction of time the radio
is transmitting (D7x) and receiving (Dgrx). The estimated
energy consumption can be obtained from Equation 1. Idle
listening is given by D;gie = Dyadioon — Drx — Drx. We
used 21.8 mA as constant current draw when receiving (Irx)
and 10.3 mA when transmitting (I7x), according to TelosB
and CC2420 radio datasheets [7], [1].

Then we executed the CtpTestApp and RplTestApp in the
COOJA simulator during 100 seconds. We obtained the esti-
mated energy consumption given the time fractions provided
by COOJA and using Equation 1, where: E' = energy con-
sumption (J), V' = system voltage (V), T' = time of simulation
(s), D;qie = time percentage of idle listening, Drx = time
percentage of RX, Drx = time percentage of TX, Irx
current drained in RX (A), I x = current drained in TX (A).

F=V xTx ((D'Ldle JrDRx) X Ipx + Drx X ITX), (D

C. Packets Related Rates Measurements

To obtain the data and control packets information, we used
Mote Output and the Radio Messages tools from COOJA. The
first logs all the motes’ outputs, time-stamped and with source
identified. Second logs all radio messages time-stamped, mes-
sage size (bytes), source and destination IDs. Application
sends the mote’s ID and a counter on the payload (including
the sink), so we could match both logs and calculate message
latency and loss rate. Data packet payload size was selected
to be easy recognizable, so we could differentiate data and
control packets.
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IV. RESULTS AND ANALYSIS

Following the methodology described previously in Sec-
tion III-A, we obtained the energy consumption for 100
seconds of operation of RPL and CTP applications. Figure 1
depicts the energy consumption, showing the average results
for each node with its respective error bars and a confidence
interval of 95%. Sink and source nodes consumes more energy
when using RPL in comparison to CTP, but difference is not
significant given the confidence interval. Median difference
for sink nodes are around 3.8%, while 7.8% for source nodes.
However, routing nodes spent about 46% more energy when
using RPL to perform the same task as CTP. This variation is
related to DODAG maintenance advertisement overhead (DAO
and DIO), plus the amount of protocols required to support
RPL (6LoWPAN, ICMPv6, and UDP), as noticed by Ko et
al [6].

SCTP ORPL

1.2
1.0
0.8
0.6

0.4

Energy Consumption (J)

0.2

0.0

Sink Source

Router

Fig. 1. Comparison between CTP and RPL energy consumption for 100
seconds of operation.

Using the methodology described in Section III-B, we
estimated energy consumption. The obtained results are shown
in Figure 2, in which we compare the COOJA-simulation
obtained results with the experimental ones.

Comparing energy consumption between COOJA simula-
tion and testbed, we observed that for CTP results differ by
4% for the sink node, 5% for source and 19% for router.
Similarly, RPL presented a 12% difference for sink, 9% for
source, and 3.4% from router. Overall, the average difference
is 8.7%. Despite the difference, there is a clear trend when
comparing the results. We think that the difference between
simulation and experimental results is caused by electromag-
netic interference over the non-shielded measurement setup,
as well as the deterministic behavior from COOJA.

Table III shows the RAM and ROM memory usage of each
TinyOS compiled application, including an Active Message
and a BLIP [6] compiled application for comparison purposes.
We compiled both BLIP and RPL applications with and
without header compression to estimate the memory footprint
fraction of BLIP, RPL, and header compression itself in the
memory usage of RplTestApp.

Considering TelosB (10KB of RAM and 48KB of ROM),
an application using only Active Message (without routing
protocol), allocates 3.6% of available RAM and 23% of ROM.
Adding CTP routing to a similar application needs 12% more
RAM and 13.8% of ROM, while using RPL requires 46%
more RAM and 26.3% more ROM when compared to CTP,
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Fig. 2. Comparison between COOJA-based estimation calculus and energy
consumption measurements for CTP and RPL in 100 seconds of operation.

TABLE III
MEMORY USAGE

RAM (bytes) | ROM (bytes)
Active Message 366 11330
CtpTestApp 1602 18116
BLIP (no header compression) 4794 23096
BLIP (header compression) 4794 25392
RplTestApp (no header compression) 6322 31028
RplTestApp (header compression) 6322 33324

given that RPL keeps 20 downwards routes on the fly and 20
parent candidates, and CTP stores only 10 parent candidates.
The most substantial portion of RplTestApp memory footprint
comes from BLIP, since RPL requires a 6LoWPAN imple-
mentation. Header compression adds 4.7% of ROM without
affecting RAM usage, no matter if using BLIP or RPL.
Following the methodology described in Section III-C, we
obtained results concerning the latency average times and the
data packets loss rates for both protocols with and without the
TinyOS LPL enabled. Results are shown in Figures 3 and 4.
From Figure 3 the minimum latency is approximately con-
stant for both protocols, in both modes of operations and for
all networks size, since it is related to the time necessary for
one of the sink’s neighbor to send it a packet. Notice that the
average latency and loss rates (Figure 4) are larger when LPL
is enabled, since packets wait longer in the queue while the
radio is turned off and some are discarded once the queue is
full. For both modes of operation, loss rates is two orders of
magnitude greater for RPL than CTP, since RPL has a larger
number of control packets (around one order of magnitude) as
depicted in Figure 5, filling the limited queues. For the same
reason, CTP is more efficient in the average latency with the
LPL disabled. But when it is enabled, RPL becomes more
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Fig. 3. Data packet latency for CTP and RPL with (above) and without
(below) enabled Low Power Listening for different network sizes.

efficient due to its larger loss rates, and the packets that arrive
to the sink are majority of the sink’s closest neighbors.

Figure 5 shows that the rate of data packets by control
packets number increases over the time, because the first one
happen with a fixed period of 5 seconds for all nodes, and the
second decreases over the time, as the network stabilizes. It
is also remarkable that RPL has much more control packets
than CTP, in order to maintain the DODAG and the protocols
necessary to support RPL. Disabling LPL also reduces the
amount of control packets for both protocols, since less packets
are lost and the network convergence is faster.

The motes energy consumption increase when LPL is en-
abled as depicted in Figure 6, due to radio duty-cycle which
needs more time turned on in order to flush the packet queue.
Small networks benefit from CTP given its lower energy
consumption in comparison to RPL, while the opposite occurs
for larger networks. Thus, CTP nodes consume less energy
than RPL up to the point in which the Cumulative Distribution
Function (cdf) is approximately 0.5, and becomes more costly
from this point on. While using LPL decreases the overall
energy consumption over time, it degrades the network metrics
for both protocols.

V. FINAL CONSIDERATIONS

The main question addressed was how much overhead (in
terms of energy consumption and memory) RPL, the IETF
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Fig. 4. Data packet loss rates for CTP and RPL with and without enabled
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Fig. 5. Relation of data and control packets over simulation time for CTP
and RPL with and without enabled LPL enable for 25-node grid network.

standard, introduces compared to CTP. We presented energy
consumption measurements of RPL and CTP implemented on
a testbed based on TelosB and TinyOS, which are the first
results of this kind to the best of our knowledge. For our
setup, RPL requires a large amount of memory on TelosB and
consumes about 20% more energy than CTP, while it provides
more flexibility in terms of communication patterns.

We also estimated the energy consumption using the time
spent in each radio state obtained from simulations running on
COOJA [8], and compared the results with real measurements
from our testbed. Results indicate that the use of COOJA pro-
vide a reasonable accurate estimate for energy consumption,
what enables researchers to scale the testbed sizes.

Next we evaluated both protocols through simulations for
larger networks. We noticed that CTP is more reliable than
RPL, since its loss rate was smaller. While TinyOS Low Power
Listening (LPL) mode is a good option for energy-constrained
networks, it increases latency times and packets loss rates for
both RPL and CTP.
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