
XXXIV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2016, AUGUST 30 TO SEPTEMBER 02, SANTARÉM, PA

Implementation of a Secure Wireless Sensor
Network Collection Protocol
Ariel D. Godinho, Bruno T. de Oliveira and Cı́ntia B. Margi

Abstract— Security is an important issue to be addressed in
Wireless Sensor Networks (WSNs), since nodes are physically
vulnerable and could be compromised. But adding security to
WSN increases battery consumption and communication delays,
therefore these problems need to be considered when implement-
ing security for existing protocols. In this work, we present our
results on the implementation of security for the Collection Tree
Protocol, a well-known routing protocol for WSN.

Keywords— Wireless sensor networks, applied cryptography,
network layer, overhead.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have been used to sup-
port several different applications, mainly related to monitor-
ing, detection and tracking. Nodes in a WSN are typically
battery-powered and resource constrained (i.e. limited amount
of memory, processing and communication), and communicate
through a multihop ad hoc network [2]. They are comprised
of several autonomous sensors that cooperate with each other
to perform sensing and data transmission.

WSNs’ characteristics make them vulnerable to a large
number of attacks, given the utilization of wireless commu-
nication and the exposure of the sensor nodes, which can be
deployed in unmonitored and unprotected areas. Additionally,
a WSN can be heterogeneous and have mobile nodes, enabling
a compromised node to harm the whole network. Therefore, it
is important to use an end-to-end security solution to provide
confidentiality, source authentication, message integrity and
replay protection [6].

Security solutions based on cryptography add control data to
messages, thereby increasing processing and memory (RAM
and ROM) usage. The increase in message length and higher
processing demand may also increase network latency and
energy consumption [6]. Additionally, the link layer frame
size of the standard utilized in the majority of the sensor
nodes (IEEE 802.15.4 [5]) has a maximum size of 127 bytes.
Hence, an efficient WSN security solution should have: low
communication overhead, low processing overhead and low
memory footprint.

This paper presents results for the integration of crypto-
graphic mechanisms to the Collection Tree Protocol (CTP) [3],
a collection protocol widely used in TinyOS [4] applications.
We consider the TelosB [8] as the sensor mote, which has an 8
MHz microcontroller processor with 48 KiB of programmable
flash (ROM) and 10 KiB of RAM.

Ariel D. Godinho, Bruno T. de Oliveira and Cı́ntia B. Margi. Universidade
de São Paulo, E-mails: {ariel.godinho, brunotrevizan, cintia}@usp.br.

II. OVERVIEW

The security mechanisms added to CTP was implemented
following the IEEE 802.15.4 standard security specification.
It is based on the Counter with CBC-MAC (CCM*) mode
with Cipher Block Chaining Message Authentication Code
(CBC-MAC). CCM* is an algorithm that combines Counter
Mode (CTR) as encryption mode used to provide confiden-
tiality. CBC-MAC provides source authentication and message
integrity, and its security level depends on the message authen-
tication code (MAC) length.

CCM* in the IEEE 802.15.4 standard includes the following
operation modes: 0 - No Security; 1 - Authentication (32-
bit MAC); 2 - Authentication (64-bit MAC); 3 - Authenti-
cation (128-bit MAC); 4 - Encryption only; 5 Authenticated
Encryption (32-bit MAC); 6 - Authenticated Encryption (64-
bit MAC); 7 - Authenticated Encryption (128-bit MAC).

Since CTP is hardware-independent, we used the Advanced
Encryption Standard (AES) with 128-bit key size, imple-
mented by Simplı́cio [9], as underlying block cipher. We also
had to adapt the initialization vectors to the application layer,
since some inputs specified by the standard are originally
generated by hardware.

III. IMPLEMENTATION

This implementation consists of a modified CTP protocol
that uses a CCM implementation in nesC and C and provides
an additional CTPSecurity interface used to set the encryption
parameters. The inputs are as follows:

• A message m and its length, l(m).
• An authenticating string a and its length, l(a), as defined

in Table I.
• A 13 bytes nonce N, as defined in Table II.
• A 128 bits key Key.
• The Operation Mode, defining the MAC length M.

TABLE I
CCM* AUTHENTICATION STRING DEFINED BY SOFTWARE

Bytes: 2 2 1 1 4
Content: senderID 0xFFFF opMode collect id seqNumber

TABLE II
CCM* NONCE DEFINED BY SOFTWARE

Bytes: 2 2 4 1 4
Content: senderID 0xFFFF 0x00 collect id seqNumber

The CTP header had to be modified to include a Securi-
tyOptions flag and a larger Sequence Number, changing the

767



XXXIV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2016, AUGUST 30 TO SEPTEMBER 02, SANTARÉM, PA

header size from 8 bytes to 12 bytes. The MAC has to be
sent with the message, decreasing the maximum payload size
depending on the security mode.

In order to avoid all nodes sharing the same key, and to stop
the root node from having a table with all keys, this imple-
mentation uses an auxiliary java class to send the MasterKey
to a node. This key is used by the CTP Forwarding Engine
in conjunction with the NodeID to generate the DerivedKey
through CBC-MAC. The MasterKey is then erased and the
DerivedKey is stored in Flash Memory, persisting through
reboot. The root can easily derive the node-specific key to
each received message through the same algorithm, using the
NodeID in its header and the MasterKey.

The feature that enables storing and loading the key in Flash
is optional, making necessary to declare USE FLASH KEY
and pass the MasterKey as a parameter when executing the
java class, as exemplified in the installtelosb script.

IV. RESULTS

A. Computation Time

We measured the encryption time of the AES software
implementation [9] and the CC2420 hardware implementa-
tion [1], being 7400 µs and 1600 µs respectively. Therefore,
the software implementation is almost 5 times slower.

Next we measured the average execution time of the CTR
and CBC-MAC. As shown in Figure 1, the execution time of
these algorithms are directly related to the amount of block
ciphers used, both taking 7.7 ms for each input block. The
CCM* implementation uses a 10 bytes a string and both the
CTR and CBC-MAC algorithms. Thus the total execution time
is basically their sum, plus the time needed to compute the
associated data, as shown in Figure 1.

Fig. 1. Encryption algorithms execution times for different message sizes.

In the worst case scenario, a 94-byte message with security
mode set to 6 sent directly to the root is expected to take at
least 620 ms [7] to be transmitted, resulting in a maximum
increase of 18% in the time needed to send and compute the
message. If a 64-byte message, which is a common size, is
used with security mode set to 6 and needs 5 hops to reach
the root, the overhead of using security can be as low as 1%.

B. Memory
We tested the default MViz application1 and a modified

version that was used to test the security in CTP, comparing
the used ROM and RAM as shown by the TelosB compiler.
Results are shown in Table III.

TABLE III
MVIZ MEMORY USAGE COMPARISON

Implementation ROM (bytes) RAM (bytes)
MViz - 114 bytes 30128 3474

Secure MViz 30442 4056
Secure MViz - Key stored in Flash 34636 4232

The message length was set to 114 bytes (the maximum
alowed by CTP) to ensure an accurate comparison. Comparing
default MViz with the Secure MViz implementation with the
key stored in Flash memory, the increase is of 4428 bytes in
ROM and 756 bytes in RAM, representing an overhead of
14,7% and 21,7% respectively.

V. FINAL CONSIDERATIONS

WSN security is an important matter in real circumstances
and must be taken into consideration when developing a
network with multiple nodes. This work presents an implemen-
tation that tackles this issue. As shown by our experiments,
security can be added to the CTP layer with little overhead,
making this implementation viable in most situations.

ACKNOWLEDGMENTS

This work is partially funded by São Paulo Research Foun-
dation (FAPESP) under grants #2015/10976-0, #2013/15417-
4 and #2014/06479-9. Cı́ntia Borges Margi is supported by
CNPq research fellowship #307304/2015-9.

REFERENCES

[1] Chipcon. CC2420 Datasheet. http://focus.ti.com/lit/ds/
symlink/cc2420.pdf, 2007.

[2] D. Culler, D. Estrin, and M. Srivastava. Overview of sensor networks.
Computer Magazine, 37(8):41–49, 2004.

[3] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection
tree protocol. In Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’09, pages 1–14, New York, NY, USA,
2009. ACM.

[4] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.
System architecture directions for networked sensors. SIGPLAN Notices,
35(11):93–104, 2000.

[5] IEEE Standard. IEEE 802.15.4: Wireless medium access control (MAC)
and physical layer (PHY) specifications for low-rate wireless personal
area networks (WPANs), 2006.

[6] C. Karlof, N. Sastry, and D. Wagner. Tinysec: a link layer security
architecture for wireless sensor networks. In SenSys ’04: Proceedings of
the 2nd international conference on Embedded networked sensor systems,
pages 162–175, New York, NY, USA, 2004. ACM.

[7] C. B. Margi, B. T. de Oliveira, G. T. de Sousa, M. A. S. Jr, P. S. L. M.
Barreto, T. C. M. B. Carvalho, M. Naslund, and R. Gold. Impact of
operating systems on wireless sensor networks (security) applications and
testbeds. pages 1 –6, aug. 2010.

[8] MEMSIC. Telosb datasheet. http://www.memsic.com/
userfiles/files/DataSheets/WSN/telosb_datasheet.
pdf, 2011.

[9] M. A. Simplı́cio. Aes: C version for 8-bit platforms (128-bit keys,
encryption-only). http://www.larc.usp.br/˜mjunior/en/
downloads/index.html, 2014.

1https://github.com/tinyos/tinyos-main/tree/
master/apps/MViz

768


