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Abstract— The automatic classification (or identification) of
modulation schemes and radio access technologies (RAT) find
several applications in military and cognitive radio systems. As
in other domains, deep learning has been applied to classification
problems in telecommunications. As other machine learning
approaches, assessing deep learning depends on the available
datasets. However, the evaluation of previous work in modulation
classification was done only with simulated signals, which may
not properly represent realistic scenarios. In this paper, we revisit
modulation classification schemes and also conduct experiments
in RAT classification. One of the contributions is a new public
dataset of digitized signals with LTE and GSM signals, both simu-
lated and digitized. We then compare deep learning with other
classifiers and observe that with a more comprehensive set of
features than used in recent works, deep convolutional networks
do not significanytly outperform other classifiers under the tested
conditions. The results also allow to draw conclusions regarding
the performance of classifiers under mismatched training and test
sets, such as training only with simulated signals and testing with
digitized waveforms obtained from commercial mobile networks.

Keywords— Deep learning, Radio Access Technology Classifi-
cation, Automatic Modulation Classification.

I. INTRODUCTION

Given an unknown received transmission format, the au-
tomatic modulation classification (AMC) is the process of
determining which modulation the received waveform uses.
This topic receives great attention in military applications
as eletronic warfare and spectrum surveillance to identify
threats in transmitted signals. Futher, this technique is ap-
plied in cognitive radio systems for spectrum awareness to
avoid interference between users [1], besides data transmission
optimization and spectrum allocation improvements [2]. A
related approach is the Radio Access Technology (RAT) which
differentiates between two or more communication standards.
One of the employments of RAT recognition is in cognitive
radio for spectrum sensing, which aim to identify licensed
primary users in a specific spectrum band to avoid interference
with secundary users [3]. RAT classification was also applied
to detect different types of wireless system with framework
based on maximum likelihood estimation [4]. Other studies as
in [5] presents a classifier that differentiate between LTE and
WiMax technology by the analysis of cyclostationary features.
A relevant previous work for the scope of this paper is [6], in
which the authors use a statistical test based on the probability
distributions to distinguish LTE and GSM.
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Deep Learning applied to AMC is a recent trend due to
its great performance in different types of data in comparison
with traditional machine learning techniques. For example, a
deep convolutional neural (CNN) model was used in [7] for
the classification of eight digital modulations (BPSK, QPSK,
8PSK, 16QAM, 64QAM, BFSK, CPFSK and 4 PAM) and two
analog modulations (WB-FM and AM-DSB). In [8], the author
extends the work done in [7] and shows that the Convolutional
Long Short-term Deep Neural Network (CLDNN) architecture
gives better results than the CNN adopted in [7].

In machine learning, as important as the learning algorithms
and architectures, are the data used for training and testing
the systems. Therefore, the availability of good datasets in
which the researchers can train their algorithms and generate
reproducible is of paramount importance. Aligned with the
reproducible research trend, the authors of [7], [9] created
a dataset useful for AMC. Also, in [10], new datasets are
proposed with application of real channel impairments to ge-
nerate realistic scenarios. As importance of machine learning
increases, data plays a similar role to channel models, which
are mandatory to the design of new RATs. In 5G development,
for example, ongoing efforts are making data and channel
models available [11].

The major contribution of this paper is a new publicly
available dataset called UFPAtelecom for RATC that consists
of LTE and GSM signals, both digitized and artificially
generated (via simulation). We then used this RATC dataset
and the AMC made available in [7], [9] to investigate the
performance of classifiers comparing deep learning algorithms
with traditional machine learning metrics in severely mismat-
ched conditions, such as when they are trained and tested
with data collected in indoor and outdoor environments to
show the possible outcomes in those distinct scenarios. We
also compare our results with others [7] and draw conclusions
about possible sources of discrepancies and difficulties to
perfectly reproduce experiments unless all data and software
are properly organized.

This rest of this paper is organized as follows. In Section II,
the UFPAtelecom dataset is described. In Section III, the
feature extraction methods and classifiers used in this paper are
briefly described. The results of simulations with the datasets
are shown in Section IV. We conclude this paper in Section V.

II. UFPATELECOM DATASET

A. Motivation

Data are abundant or have a relative low cost in many
machine learning application domains. For example, the text-
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to-speech system presented in [12], which represents the state-
of-the-art, achieves quality close to natural human speech
after being trained with 24.6 hours of digitized speech. In
contrast, the research and development of machine learning
for telecommunications has to deal with a relatively limited
amount of data. The lack of freely available data impairs
the data-driven lines of investigation. This is our primary
motivation for the development of new datasets.

The second one is the importance that we believe needs to
be placed on the propagation channels. Some of the currently
available datasets include a large variety of signals with respect
to the modulation, for example, but very limited variation of
the channel. For example, in [7], a single channel model from
the GNU Radio software was used to generate all signals, in
both training and test subsets. However, in a communication
system the channel is the only block that is not designed by
humans. In contrast, the elaborate processing that happens in
the brain to generate and detect speech is not under complete
control of system designers as in telecommunications. Hence,
the data “richness” depends primarily on the channel, given
that input and output signals are learned along the machine
learning process or determined by the adopted equipment and
/ or communication standard. For this reason, the philosophy
behind the UFPAtelecom and other datasets being generated in
our group prioritizes the variety of channels. We believe this
approach will facilitate conclusions regarding the generaliza-
tion capabilities of data-driven telecommunication algorithms.

With these two primary motivations, the UFPAtelecom
dataset was created to help in telecommunications education,
research and development of RATC algorithms. It can be
downloaded from [13] and currently consists of LTE and
GSM signals divided in three categories: artificial signals,
signals digitized from commercial mobile networks owned by
operators and software-defined radio (SDR) signals generated
at our laboratory premises. Figure 1 describes the general
organization of the dataset.

Fig. 1
ORGANIZATION OF LTE AND GSM MODULATION IN THE UFPATELECOM

DATASET FOR ARTIFICIAL, DIGITIZED AND SDR SIGNALS.

The artificial signals indicated in Figure 1 were generated

using the MATLAB software, by varying the signal-to-noise
ratio (SNR) of a noise-free base signal. More specifically, we
vary the SNR from −20 to 20 dB in steps of 2, creating 20
versions of a given base signal. The operator signals were col-
lected using a Keysight EXA Signal Analyser N9010A (VSA)
using the Keysight VSA 89600 software (VSA software).
This hardware along with its software allows both offline and
online demodulation and gives traces of the received signal
that express data in time and frequency domains. The third
category, the SDR signals, were created using a setup based
on GNURadio with the Universal Software Radio Peripheral
(USRP) SDR.

The information about the total size in Gigabytes (GB) and
the total duration in seconds of the signals in the UFPATelecom
dataset is shown in Table I. Details about each category of
signals are presented in the next sections. Note that methods
to properly obtain some uplink signals are still under develop-
ment and there are no corresponding signals.

TABLE I
DURATION IN SECONDS (SEC) AND SIZE (GB) FOR UFPATELECOM

SIGNAL CATEGORIES.

LTE GSM
Downlink Uplink Downlink Uplink

Sec. GB Sec. GB Sec. GB Sec. GB
Artificial 52.8 66 8.8 6.6 340 2.98 - -
Operator 1.28 0.05 - - 11.2 0.13 - -
SDR 4800 199 800 20 17 0.33 - -

B. Artificial (simulated) base signals

1) GSM: In order to create the GSM artificial base signals
dataset, we utilized the Osmocom [14] software, which has
an extensive library dedicated to GSM. With this software, a
base GSM downlink signal is generated. This base signal is
generated at 4 samples-per-symbol (sps), therefore the burst
size is 625 instead of 156 bits, and has the duration of
approximately 17 seconds (29,544 bursts), given that each
GSM burst lasts for 0.577 ms. After the process of varying
the SNR, the dataset has the total duration of 340 seconds and
total size of 2.98 GB.

2) LTE: Both uplink and downlink artificial LTE base
signals with bandwidths of 1.4, 3, 5, 10, 15, and 20 MHz
were created using the MATLAB LTE toolbox [15]. After this
process, the signal is passed through a multipath propagation
channel. We selected the parameters defined by 3GPP [16] for
the channel, and after that the Extended Pedestrian A model
(EPA) [16] with Doppler frequency of 5 Hz was selected.
Every base downlink signal of every bandwidth has 2.64 se-
conds of total duration, while the base uplink has 0.44 seconds
of total duration. Taking in account every bandwidth utilized
and the process of varying the SNR, the total duration of the
dataset is 52.8 seconds and size of 66 GB for downlink and
8.8 seconds and size of 6.6 GB for uplink.

C. Mobile operators signals

As mentioned, the mobile operators signals were captured
using VSA hardware and software. The measurements were
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performed at the building “Espaço Inovação” at UFPA. Both
GSM and LTE digitized operators signals were searched within
the frequency bands distributed among mobile operators by
ANATEL, the National Agency of Telecommunication of
Brazil, to operate in Amazon region.

1) GSM: The absolute radio-frequency channel number
(ARFCN) channels were manually tuned with the help of the
VSA hardware and software using the GSM/EDGE module.
In the given scenario, only 7 downlink channels were found
within the GSM 900 MHz frequency band. The module in-
forms the GMSK constellation, burst type, demodulated slots,
and also, calculates quality of service measurements regarding
the received signal. These parameters were used to validate
the signals, since we need to avoid recording only noise or
other signals that are not GSM. The GSM digitized operators
dataset has signals with frequency band of 200 KHz, sampling
frequency of 640 KHz, and were recorded with frequency span
value of 500 KHz which indicates the frequency bandwidth
analyzed.

2) LTE: A similar effort was done to digitize operator’s
LTE signals, and only 5 downlink channels were received and
analyzed. The LTE Advanced module of the VSA software
was used to collect traces that show modulation constellation,
demodulated physical channels values, active resource blocks,
signal quality measures and others parameters. The LTE di-
gitized operators dataset has signals with frequency band of
10 MHz.

D. Indoor software-defined radio (SDR) signals

Both GSM and LTE SDR signals, as mentioned in Sec-
tion II, were generated using a GNURadio setup with two
USRPs. The first USRP is used to transmit the noiseless
artificial base signal to the air interface, while another is
utilized to capture the signal sent by the first.

We used 560 LTE artificial signals, 480 for downlink and
80 for uplink, and 1 GSM artificial downlink signal.During
the transmission and capture phase, the LTE signals were
repeated until each signal reached 10 seconds of duration,
while the GSM signal was only transmitted once. Hence,
the total time for these signals is 4800 seconds for LTE
downlink, 800 seconds for LTE uplink and 17 seconds for
GSM downlink.

Both digitized GSM and LTE signals were stored as binary
files. The real part of the first IQ sample is the first element
of the file, and the imaginary part of the first IQ sample is
the second element of the bin file and so on. We used a plain
(raw) float numbers in little-endian format to help researchers
to use them on different platforms.

III. ADOPTED CLASSIFIERS AND FEATURES

This section describes the adopted classifiers and features.
All classifiers are trained and tested with Ntr and Nte examples,
respectively. The input to the classifiers is a vector with K real-
valued elements. This paper adopted two distinct sets of featu-
res to represent the signals. The first are simply the complex-
valued samples of the time-domain signal as adopted in [7].
The second set are the statistical features adopted in [17],

which we call here knowledge-based to emphasize they are
not automatically learned but hand-designed. In [7], the time-
domain features were compared with cyclic cumulants and the
former led to better results. In this paper we used the more
elaborate set of K = 136 features adopted in [17].

A. Features

1) Time-domain samples: In this paper, we compare the
performance of AMC algorithms using versions of the
RML2016.10a dataset presented in [7]. It should be noticed
that the authors later released the RML2018.03 dataset, which
is itself a modified version of RML2016.10a. For AMC we
used these two datasets.

Given the well-known capability of CNNs to extract sen-
sible features from raw data [7], the authors used in [7]
a window of 128 consecutive complex-valued time-domain
samples as input features for the deep neural networks. Hence,
the classifier input feature vector has dimension K = 256 to
account for the real and imaginary components. The signal
generated for each modulation is passed through a simulated
channel (a GNU Radio model) that includes random walk
drifting of carrier frequency oscillator, multi-path fading of the
channel impulse response and additive Gaussian white noise.

2) Knowledge-based features: As mentioned, in order to
generate the classifier’s input parameters, we adopted the ex-
tended set of features presented in [17]. For features extraction,
the maximum squared magnitude frequency component A[k]
and the maximum value of a Discrete Fourier Transform
(X[k]) are calculated in order to derive features that considers
the ratio between two maxima in the absolute values of
X[k], the estimation of the center frequency according to the
observation window size of samples, and the ratio between the
signal powers within different bandwidths around an estimated
center frequency. For lack of space, the reader is invited to
refer to [18] for more details.

B. Classifiers

AMC and RATC consist in identifying the modulation
scheme or the RAT of a given communication system with a
high probability of success and in a short period of time. The
exact values for this probability and sensing period depends
on the application, especially if the processing can be done
offline or not. Another important aspect of AMC and RATC
is the prior information that a classifier has, such as the
symbol rate, the signal bandwidth, carrier frequency, etc. In the
literature of AMC and RATC, some algorithms are tested by
assuming simplified channel models and/or perfectly estimated
parameters, which may be unrealistic in several practical
scenarios. In this paper we used not only distinct datasets,
but also classifiers with different characteristics with respect
to accuracy and computational cost.

We used four distinct machine learning algorithms in this
paper. The first is the Decision Tree (DT), which can be seen
as a set of if/else rules based on thresholds. To classify an
instance to a class, the DT algorithm traverses the tree to find
the leaf node for this instance and returns the ratio of training
instances of the class in this node. The DT is considered a
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white box model due to its easy interpretability [19]. A related
technique is the Random Forest (RF), which is an ensemble
(more specifically using bagging) of several decision trees.
The RF algorithm searches for the best feature among subset
of features, instead of searching for the very best feature when
splitting a node, which adds extra randomness when growing
trees [19]. It yields great tree diversity and overall better
model. Another traditional method for multiclass classification
is the Naïve Bayes (NB) algorithm which applies the Bayes
theorem considering the independence between every pair
of feature, which characterizes a naïve assumption. The NB
method can be very fast compared with other algorithms and
helps to alleviate problems of dimensionality [20]. The last
learning algorithm employed was the Convolutional Neural
Network (CNN) which is composed of multiple hidden layers
which differentiates from the traditional neural network by the
convolutional layer that ensemble low-level feature from one
layer to high-level features of consecutive layers reaching great
performance [19].

IV. RESULTS

We first present results for AMC using datasets
RML2016.10a and RML2018.03. Recall that the K = 256
features adopted for experiments with these two datasets are
the 128 complex-valued time-domain samples. We did not
use the knowledge-based features in AMC. Then we discuss
RATC using the UFPATelecom dataset with both time-domain
and knowledge-based features.

A. AMC

The goal of our AMC experiments is to draw direct compa-
risons with [7]. We use the same convolutional neural network
used in [7] but adopted three different dropout probabilities.
The dropout helps the network generalization capability and
is widely used in deep learning.

The following parameters were adopted for the three classi-
fiers. For the DT, the maximum depth parameter was 80. For
RF, the number of trees was 80 and the maximum depth was
200. For the CNN, the number of epochs was 100.

Table II shows the mean accuracy among all SNR values for
each classifier tested in this work. It is possible to see that, in
all cases except for RF, the tests with the RML2018.03 dataset
achieved better accuracy and most results are comparable to
the ones obtained in [7], but not exactly the same. More
importantly, the results in Table II lead to the conclusion
that, while the CNNs can extract features from raw data, the
time-domain samples are not reasonable features for classifiers
such as decision trees, which are based on if/else rules and
thresholds. This observation led us to design the following
RATC experiments using also a set of improved knowledge-
based features.

B. RATC

The total number N of examples available depend on the
adopted features. For the time-domain samples, N can be
easily calculated given the total number of samples and the

TABLE II
OVERALL AMC ACCURACY OF CLASSIFIERS FOR DATASETS RML2016.10a

AND RML2018.03 USING THE TIME-DOMAIN SAMPLES AS FEATURES.

Algorithms RML2016.10a RML2018.03
CNN2 Dropout (60%) 62.3% 63.6%
CNN2 Dropout (50%) 62.7% 67.0%
CNN2 Dropout (0%) 68.8% 69.1%

Decision tree 24.4% 25.4%
Naive Bayes 18.5% 20.2%

Random forest 13.6% 13.3%

TABLE III
OVERALL RATC ACCURACY USING THE KNOWLEDGE-BASED AS

FEATURES.

Train dataset Test dataset CNN DT RF
50% ar 50% ar 90.00% 83.36% 89.82%
50% ar 50% op 47.69% 52.65% 41.706%
50% ar 50% sdr 52.39% 53.23% 45.124%

50% ar + 50% op 50% ar 88.56% 83.86% 88.98%
50% ar + 50% op 50% op 98.932% 99.976% 99.98%
50% ar + 50% op 50% sdr 96.32% 98.32% 97.9%

window duration. Similarly, for the knowledge-based features,
each 512 samples of the raw data generates an example of 136
samples (each number of the samples represents a feature from
Section III).

For RATC experiments, the values of N for each signal ca-
tegory when using the knowledge-based features are 560040,
25768 and 295090, for artificial (ar), operator (op) and SDR
(sdr), respectively. Figure 2 shows the RATC accuracy result
over SNR values when using time-domain samples as features,
while Table III shows the RATC accuracy result when using
knowledge-based features.
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Fig. 2
RATC ACCURACY FOR TEST DATASETS WITH DISTINCT SNR VALUES

USING TIME-DOMAIN SAMPLES AS FEATURES.

The RATC results using the time-sample as feature show
that even CNN does not provide a good accuracy, in contrast
to the AMC experiments here and in [7]. However, when the
features from [17] were adopted, the accuracy increases for
the artificial test set and, if the operator signals compose the
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train set by 50%, the accuracy for all the test sets returns a
good accuracy.

Figure 3 provides detail about how the RATC classifiers
perform for different SNR in the test sets. In this case the
train dataset was composed only by artificial signals.

The combination of data from distinct sources in the training
phase helps to evaluate the robustness of classifiers, in this
case, our purpose is to illustrate how different can be the
results in mismatched conditions. The Table III shows that RF
and DT classifiers achieved similar performance in comparison
with CNN, in the majority of scenarios that use indoor and
outdoor data for training, which suggests that other factors
besides performance should be evaluated in this case.

In fact, the DT algorithm is the approach with the lower
computational cost and with fastest processing for the three
scenarios, with a maximum depth D = 80, and also, RF with
the number of trees T = 80 and depth D = 200 has a minor
computational complexity in comparison with CNN, that has
3 dropout layers, 2 convolutional layers and 2 dense layers
which demanded a major level of computation between layers
and more processing time.
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Fig. 3
RATC ACCURACY FOR TEST DATASETS WITH DISTINCT SNR VALUES AND

THE KNOWLEDGE-BASED FEATURES.

V. CONCLUSIONS

This work presented the UFPATelecom dataset that can be
used not only for RATC investigations, but also on distinct
applications. Also, we have tested four classifiers applied to
RATC using two distinct types of features. The first one was
the time-sample features used in previous works, and the se-
cond was a knowledge-based set of features. This comparison
allowed to conclude that the performance of many classifiers
is highly-dependent on the appropriate choice of the features,
and general conclusions require systematic evaluations using
comprehensive combinations of features and classifiers. In
addition, the classifiers outcomes revealed that traditional
machine learning approaches can achieve good performance
similar to CNN when trained with incompatible data. The
results also emphasize how important is the channel in the as-
sessment of machine learning applied to telecommunications.
The datasets will be expanded taking in account this aspect.
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