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Abstract— Wireless Sensor Networks (WSN) play an important
part in enabling the Internet of Things, but WSN application
development and resource management are still a costly endeav-
our. This cost is related to the diversity of resource constrained
platforms and network protocols, which demand specialized
knowledge and practice. To solve this, we propose WARM: a
framework that employs Web Service and Software Defined
Networking paradigms to enable the parametrized scheduling
of tasks. WARM allowed us to configure typical applications
running on a simulated WSN using a web browser. Furthermore,
we consider that WARM enables the concept of Sensing as a
Service.

Keywords— Wireless Sensor Networks, Software Defined Net-
working, Application development, Resource management

I. INTRODUCTION

The Internet of Things (IoT) is a new term that has drawn
a lot of attention from the computing community [2]. It is
composed of devices capable of sensing/actuation, communi-
cation and processing [21]. There are different types of IoT
applications and approaches to implement them, being the two
main approaches centralized services and peer-to-peer [21].

IoT centralized services benefit from IETF standards, such
as 6lowpan [19] and CoAP (Constrained Application Protocol)
[4], and from cloud infrastructure such as the European
initiative FIWARE [10]. On the other hand, on the peer-to-
peer approach, IoT envisions a network of physical objects
enabled with the capability of collaborating with each other
in order to make smart environments and objects. Wireless
Sensor Networks (WSN) are part of this vision and become
a key enabling technology. It is worth to notice that hybrid
solutions are likely to be used.

While WSN are key enabling technology for IoT, a larger
usage requires the easing of the development of applica-
tions, of the infrastructure management, and of the access to
the configuration and the data produced by such networks.
Furthermore sharing the WSN infrastructure with different
applications is key to cost efficiency.

As an answer to this need, we propose a Software Defined
Networking (SDN) based framework, WARM, aimed for the
development of WSN applications. With WARM, Sensing as
a Service could become a reality.

WSN are composed of spatially distributed autonomous
sensors characterized by resource constraints including lim-
ited processing speed, storage capacity and communication
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B. Margi¸ Laboratório de Arquitetura e Redes de Computadores, Universi-
dade de São Paulo, São Paulo-SP, Brazil, E-mails: henrique.c.s@usp.br, an-
dre.hahn@usb.br, yuka.solano@usp.br, brunotrevizan@usp.br, cintia@usp.br.

bandwidth [7]. In face of such constraints, the paradigm of
SDN can be an advantage on the management of WSN nodes
and resources, improving reliability and performance of WSN.
Such improvements can be achieved mainly because of the
flexibility given by the SDN paradigm, which allows the net-
work administrator to easily change routes within the network
to fit new policies. These policies could address WSN’s main
problems: limited node energy, link quality changes, node
failures and limited node processing power [20], [8], [13].

A framework such as WARM could greatly benefit from the
SDN paradigm, not only due to the network monitoring and
routing flexibility it allows, but also due to the main concept
behind: the separation between control and data planes, with
particular data flows for each of them. This separation provides
an abstraction that allows the Framework Controller to be
built dealing with the data plane, leaving the network control
plane to the SDN controller. This way, WARM’s Framework
Controller can use status information gathered by the SDN
controller in order to balance the load of multiple network
applications throughout the more appropriate nodes, saving
energy and ensuring resource use optimization.

Thus the main contribution of this paper is to present
WARM, an SDN-based framework for developing and man-
aging WSN applications. Its specification and implementation
are described, as well as the experiments executed showing
how WARM enables the concept of Sensing as a Service.

This paper is organized as follows. Section II describes
context and related work. Section III describes WARM specifi-
cation, while Section IV discusses its implementation. Results
are presented and discussed in Section V. Section VI con-
cludes this paper presenting final remarks and future work.

II. CONTEXT AND RELATED WORK

In this section we present our review on the challenges
concerning the development and management of WSN appli-
cations, as well as previous solutions created as an attempt to
reduce these difficulties. We first analyze several frameworks
which can be divided in the categories of query processors
and macroprogramming frameworks, discussing the advan-
tages and disadvantages of each one. We then review the
contributions that the Software Defined Networking paradigm
(SDN) can provide in order to make WSN more flexible
and manageable. Finally, we present the only work to our
knowledge that proposed a WSN application framework based
on the SDN paradigm.

Since the inception of WSN, frameworks have played a role
in easing the work of dealing with specific tasks and patterns
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common to sensor network applications. The first approach
for WSN frameworks was to make these networks as close as
possible to a real-time updated database. One such framework
is TinyDB [14], a distributed query processor system. SWISS
QM [17] is also designed as a query processor, but is built
on top of a virtual machine (VM) in order to be independent
of the query language. GSN [1] is a WSN middleware also
designed to represent WSN tasks as SQL queries, but based on
the concept of swappable XML defined virtual sensors which
abstract sensor node hardware.

Despite their flexibility for data sensing applications, the
query based data modelling provided by TinyDB, SWISS QM
and GSN is not focused on controlling roles. Such roles,
however, are an important part of the IoT infrastructure [21].

Another category of WSN frameworks makes use of the
macroprogramming paradigm as a means to provide easy yet
powerful ways to develop WSN applications [3], [5]. Their
goal is not to prune development by focusing applications on
specific scenarios such as sensing data.

PyoT [3] aims to be a complete solution for the Internet
of Things utilizing the Python script language. PyoT abstracts
low-level hardware details through a message-oriented middle-
ware, which handles the tasks distributed by a network control
center. Terra [5], on the other hand, implements a VM on top
of each sensor node so it can execute the bytecode generated
by compiling statically checked script applications. Its focus
is to decrease application binary size in order to reduce the
overhead of transmission during remote application updates.

Although powerful, the macroprogramming approach also
has its limitations. One of them is denying the possibility of
giving each sensor node an individual role, since the appli-
cation development process consists of specifying a general
behavior for the whole network. It also encumbers the devel-
oper with the need to write and debug embedded code, unlike
query-based solutions. Finally, it restrains network behavior
and policy configuration to be maintained through software
which must be remotely updated in case of change. This last
aspect is one of the reasons we look into SDN-based solutions
as a possible approach to build upon.

Initially conceived for high speed and low latency wired
networks, the SDN paradigm is based on the separation of
a network’s control and data planes. This allows to configure
network policies through software, as if the whole network was
one single virtual entity [11]. In practice, this means packets
inside an SDN are labeled as belonging to a flow and are
routed according to rules specific for this flow. These rules
are defined by one SDN controller, and then configured on
the switches’ flow tables.

Through the usage of SDN, previous work addresses and
answers some of WSN well-known problems: complexity of
configuration and management, low flexibility and network
resource underutilization. They propose architectures where
the SDN paradigm is adapted to WSN, making SDN switches
of sensor nodes and addressing the challenges of applying it
to low rate and high latency wireless networks. Based on the
OpenFlow [16] protocol concepts, Sensor OpenFlow [13] is
one of such solutions, which achieves in-network processing
through rules applied to packets pertaining to individual flows.

Another SDN solution for WSN is SDWN [6] that provides
flow rules capable of performing actions regarding a packet
after being applied to any particular set of bytes of its payload.
As with SDWN, TinySDN [20] also relies on an underlying
OS. Unlike Sensor OpenFlow and SDWN it fully separates
control and data flows and, additionally, divides the network
among end devices and controller nodes, allowing multiple
controller nodes which not necessarily need to be sink nodes.
Furthermore, TinySDN also allows the definition of rules
composed by actions and values to be applied to specific flows.

All of the above-mentioned works successfully present the
advantages of SDN to solve WSN problems they describe,
however they do not address the difficulty of deploying a
WSN application. What makes such a task a very demanding
one is the necessity of developing customized application code
for different platforms of sensor nodes without compromising
application code that is already running on top of a WSN.

De Gante et al. [8] were the first, to our knowledge, to
propose an SDN-based framework to ease the development,
deployment and management of WSN applications. However,
this architecture does not concern the data plane in a WSN.
The developer is left with an automatically configured WSN
infrastructure, but still needs to tackle embedded application
development and node resource management after deployment.

In order to provide such capabilities, we believe it is neces-
sary to develop a data plane protocol to handle application
level activities in a similar way that SDN communication
protocols do for the SDN control plane. This would exempt
an application developer to be concerned with embedded
systems programming and let development focus on high-level
application logic, much like the solutions like TinyDB and
Terra allow, but also with the advantages provided by SDN.

III. FRAMEWORK SPECIFICATION

We have seen how the SDN paradigm can improve the
tasks of WSN configuration and management, being an in-
teresting solution to most of the problems encountered in
the WSN application frameworks we studied. Therefore we
present WARM, an SDN-based framework for developing and
managing WSN applications. WARM makes use of the SDN
paradigm not only to provide a flexible WSN infrastructure,
easily configurable and manageable, but also to provide a
flexible application layer for sensor nodes.

To achieve this, WARM is based on the concept of appli-
cation tasks, which are hardware dependent routines whose
instances can be scheduled in sensor nodes. These routines
should implement lightweight processing algorithms, environ-
mental sensing or actuator actions, each one representing a
different capability of a sensor node. Furthermore, they can
also make use of the provided SDN-based IEEE 802.15.4 stack
in order to receive input data from other tasks or to send their
output data as input for other tasks through the sensor network.

Tasks are designed to be platform dependent and to be
implemented by hardware vendors with the goal of using a de-
vice’s resources in order to perform common WSN activities.
Examples of tasks would include sensing ambient temperature,
light and humidity, drive a motor, activate a relay, compute
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an average, store data to an SD card or output it through
a serial connection − important for enabling sink nodes to
output gathered data to a network gateway.

Tasks are to be loaded to sensor nodes according to an appli-
cation’s foreseeable needs. They sit on top of the Framework
Middleware, one of WARM’s two architectural counterpoints.
The Middleware is a piece of embedded software to be
configured and loaded once to each of the nodes in a WSN.
As depicted on Figure 1, WARM’s architecture also includes a
centralized controller, which comprises an SDN controller, an
application controller we call the Framework Controller, and a
web service API based on the Representational State Transfer
(REST) software architecture [9].

Fig. 1. Overall view of the system.

To configure and manage a WSN application, the Frame-
work Controller must communicate with each node’s Mid-
dleware. The Controller communicates with the purpose of
scheduling task instances, querying nodes or tasks descriptions
and retrieving status information. For this purpose, WARM
was designed with an application data plane protocol. This
protocol has a set of request and reply messages to be
exchanged between Middleware and Controller, as well as a set
of messages for data exchange among running task instances.

Concerning the user interface, WARM’s functionalities in-
clude: to schedule new task instances for the sensor network
to perform, and also to retrieve nodes and tasks descriptions
and status. For instance, in order to schedule a new sensing
task the user only needs to set an address to where the
gathered data will be sent and a period, if it is a periodic
task. Node descriptions made available by WARM include
location, memory, operating system and existing tasks, while
status include battery level and the number of executions of
specific task instances.

The architecture proposed in Figure 1 assumes an SDN
layer such as designed in TinySDN [20]. The layer provided
by TinySDN focuses on the differentiation of data and con-
trol flow, and includes SDN-enabled sensor nodes and SDN

controller nodes. This design allows WARM’s Framework
Controller to be built on top of SDN controller nodes and its
Framework Middleware to be on top of every SDN-enabled
sensor node. Besides, it addresses the overhead imposed to a
WSN due to the presence of control flows, regarding to the
increase of network delay and energy consumption. The role
of the SDN controller is mainly to create and manage flows
according to the SDN rules it will apply, which are provided
by the application (in our case, the Framework Controller).
The SDN-enabled nodes can thus behave both as end devices
and as SDN switches. This behavior means the forwarding of
data in and out of application layer (in this case, the Framwork
Middleware) or to other nodes, as defined by the applied SDN
rules regarding the flow to which data belongs.

WARM’s Framework Middleware is responsible for man-
aging application data. It can receive data from the network
through the SDN layer, forward this data to schedule tasks or
to be processed by tasks. It is also responsible for sending any
output data to the SDN layer, so that it can be forwarded to the
network. In order to manage this data, the Middleware depends
heavily on the concept of SDN flows, basing the decision of
how to process each received packet according to the flow it
belongs to. The Middleware’s architecture is centered on the
concept of tasks. These are specific routines executed by sen-
sor nodes, implemented through the Middleware’s Task API.
This model allows the implementation of tasks to acquire data
through sensors, control actuators, perform data aggregation
and many kinds of routines using other resources a sensor
node may have.

IV. FRAMEWORK IMPLEMENTATION

WARM’s implementation can be divided on two main
software bundles. The first bundle is the Framework Controller
and REST application server, which are implemented with
version 2.7.11 of the Python language, meant to run on top of
a GNU Linux platform. The second is the Framework Mid-
dleware, an embedded application for sensor nodes running
version 2.1.2 of TinyOS [12], implemented with the nesC
language. Connecting both is the SDN network layer provided
by TinySDN [20].

The REST application server is designed to run alongside
the Framework Controller on a GNU/Linux base station con-
nected to the WSN. It uses the Python API provided by the
Framework Controller to provide a RESTful interface for this
API. Its implementation is based on the Flask microframe-
work, which allows the server to map each of the Controller’s
API functionalities to an URL path and its return values.

The Framework Middleware is implemented as a series of
interconnected modules following the programming paradigm
adopted by the nesC language. NesC restrains TinyOS applica-
tion development to the implementation of modules and their
respective configurations. The Middleware is composed of
five modules: Scheduler, Receiver, Emitter, Protocol Processor
and Task API. The last one is responsible for abstracting
the functionalities of all the other Middleware components,
decoupling them from task application logic in order to ease
the task development process for hardware maintainers.
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The Framework Controller is implemented using the
SQLAlchemy Object Relational Mapper over an SQLite
DBMS. The implemented databases are responsible for stor-
ing network topology and task schedules. By analysing this
information, the Controller is able to assign SDN flows for
scheduled tasks, requesting them to the TinySDN controller.

V. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate WARM, we developed a simple web application
to provide a graphical interface for the framework’s RESTful
API. This web application allows a user to query information
about existing nodes, tasks and task parameters as well as
schedule and cancel task instances in network nodes across a
test WSN. It also displays a map showing the network sensor
nodes and the way they are wirelessly connected to each other.

For our experiments, we setup a WSN of TelosB1 motes in
the simple topology depicted on Figure 2, simulated using the
COOJA tool [18], a simulator distributed with version 3.0 of
the Contiki operating system. The setup for this simulated net-
work consisted of seven nodes, including: an SDN controller
node, a Framework Controller node and five generic nodes.
The Framework Middleware was loaded to each one of the
generic sensor nodes present in this network. Along with it, a
set of tasks implemented in order to exemplify common WSN
application activities was also uploaded to the emulated motes.
This set included tasks for sensing temperature and humidity,
to turn a LED on and OFF, to calculate the average of input
data received from other sensor nodes and to output network
received data through a serial connection (useful for the sink
node to output gathered data).

Fig. 2. Simulated WSN topology screenshot from the COOJA simulator tool

The first experiment consisted in measuring the amount of
ROM and RAM occupied by the Framework Middleware in
the TelosB mote we used for our tests. In order to measure
the overhead represented by our set of loaded tasks, we first
measured the amount of memory occupied by a Middelware
configuration with no tasks loaded, compiled along with
TinyOS and TinySDN’s middleware. This setting resulted in
a total of 4,954 bytes of occupied RAM and 27,258 bytes of
ROM, representing respectively 49.54 % and 56.79 % of RAM
and ROM in the device. The result with a configuration that
included the additional set of tasks for our tests environment
was of 6,256 bytes of RAM and 38,106 bytes of ROM,
representing respectively 62.56 % and 79.39 % of RAM and
ROM in the device. These results mean an overhead of 1,302
bytes of RAM and 10,578 bytes of ROM for our designated
set of tasks. Table I compares the memory results obtained for

1http://www.memsic.com/userfiles/files/Datasheets/
WSN/telosb_datasheet.pdf

WARM with the results presented Terra, TinyDB and Swiss
QM, discussed on section II. Notice that WARM requires the
least amount of ROM to execute, while it uses the largest
amount of RAM when compared to the others.

TABLE I
OCCUPIED RAM AND ROM BY STUDIED WSN FRAMEWORKS

WSN Framework Solution RAM Usage ROM Usage
WARM - Minimal 4,954 Kb 27,258 Kb
WARM 6,256 Kb 38,106 Kb
Terra - Minimal [5] 3,570 Kb 32,162 Kb
Terra [5] 3,580 Kb 48,286 Kb
TinyDB [17] 3,000 Kb 65,000 Kb
Swiss QM [17] 3,000 Kb 33,000 Kb

The second experiment intended to measure the overhead
introduced by WARM’s communication protocol. To achieve
this, we recorded the elapsed time for exchanging protocol
messages between the Framework Controller and the Frame-
work Middleware. Table II presents the average time from ten
samples obtained using a sensor node positioned in an average
distance from the node running the Framework Controller.
Notice that the COOJA simulator, which was used for taking
these measurements, has a precision of 1 ms, causing standard
deviations of 1 ms for most of the measured values. When
observing results from Table II, it is worth noticing that
sensing humidity takes about 104± 14 ms [15].

TABLE II
AVERAGED COMMUNICATION OVERHEAD DUE TO WARM’S MESSAGES.

Exchanged message pair Average time (ms)
Node association request-reply 8 ± 1
Task description request-reply 5 ± 1
Task scheduling request-reply 4.9 ± 0.3
Task cancellation request-reply 4.8 ± 0.4
Task execution report request-reply 5 ± 1
Node status report request-reply 5 ± 1

This protocol overhead sets the cost for managing a
WSN application deployed through WARM. As an example,
scheduling a set of tasks implies in exchanging the appropriate
protocol messages in order to notify each of the involved
nodes. This management cost is not exclusive of WARM, since
all of the studied WSN frameworks have their own character-
istic cost for propagating messages through the network in
order to manage it. TinyDB, for instance, disseminates several
messages containing a single query to be executed, with each
node broadcasting it to its children in case they were involved
in executing the query. This requires the maintenance of
network topology information through semantic routing trees
[14], not very far from what WARM accomplishes through
TinySDN.

SwissQM implements a protocol of its own in order to
guarantee a reliable query distribution. Since its queries are
earlier translated into small VM bytecode strings, SwissQM
is allegedly more efficient than TinyDB [17], taking less
messages to transmit one query. Unfortunately, neither TinyDB
nor SwissQM provide detailed results of query distribution
overhead. Terra [5], on the other hand, report an average
of 6.76 seconds for disseminating the 24 messages of an
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application bytecode through a network comprised of 9 nodes,
very close in size to the one present in our simulations.

All of the above mentioned works have similar restrictions
regarding flexibility, requiring nodes to be pre-configured with
a set of supported functionalities that will allow the deploy-
ment of runtime changes. While WARM seems to be better
for managing node capabilities in a granular and individual
basis, TinyDB and SwissQM appear to be more optimized
for managing groups of nodes with similar behaviors. WARM
could also achieve such optimizations if TinySDN provides
multicast support, which would allow the scheduling of a task
at several nodes at once. Terra, as a macroprogramming frame-
work, is the most costly of the compared framework solutions,
but also allows greater flexibility in case of applications where
all nodes behave in similar ways.

The last experiment targeted user experience. First, when
using the developed web application, it was possible to config-
ure a WSN application for our simulated network using a web
browser. The test application was configured to periodically
sample temperature data from the environment, calculate the
average and send it to a sink node that is responsible for
outputting it through a serial connection. Second, the same
simplicity was observed when modifying this WSN application
to turn on one of the mote’s LEDs in case the averaged
temperature should surpass a value configured on the fly.
Changing which nodes had the roles of data sink and of
averaging sampled data was also achieved with the same ease,
without the need to reprogram any sensor node.

These experiments together show that WARM is feasible,
introduces little overhead, and makes programming simpler.

VI. CONCLUSIONS

We proposed WARM, an SDN-based framework that ab-
stracts the whole process as the scheduling of tasks done
through a RESTful API. This is done without hindering needed
flexibility for implementing further customized applications.
Such customization can be achieved through the development
of tailored sensor node tasks using the API provided by the
Middleware presented in our architecture.

Our work also considers the many resource constraints that
characterize WSN, which we address through the use of the
SDN paradigm. SDN is the foundation which allows WARM’s
Controller to monitor and balance resource load, as well as
handle the typical operational failures a WSN may present.

Additionally, we implemented a full stack for WARM’s
proposed architecture, using the nesC and Python languages on
top of TinyOS, TinySDN and GNU/Linux. This prototype was
successfully evaluated for the configuration and management
of an application running on a simulated WSN, using only a
web application developed as a simple graphical user interface
for WARM’s RESTful API. Furthermore, memory usage and
time overhead confirm WARM’s feasibility.

For future work, we plan to experiment WARM with other
network topologies and applications. We intend to enable
remote addition and removal of tasks from deployed sensor
nodes, as well as to port WARM to more platforms. We also
consider providing support for the multiple distributed SDN
controllers allowed by TinySDN.
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