Algoritmo de Conformação de Feixe Usando Projeção Adaptativa com Restrição Quadrática

Ciro A. Pitz, Eduardo L. O. Batista e Rui Seara

Resumo—Este artigo apresenta um novo algoritmo de conformação de feixe para sistemas de comunicações móveis. Tal algoritmo é baseado em uma modificação do problema de otimização considerado para desenvolver o algoritmo AP-CSG (adaptive-projection constrained stochastic gradient). Essa modificação consiste na substituição de uma restrição afim por uma restrição quadrática. Como resultado, o algoritmo obtido, denominado aqui quadratic AP-CSG (QAP-CSG), proporciona maiores valores de SINR (signal-to-interference-plus-noise ratio) do que os algoritmos similares disponíveis na literatura. Resultados de simulação são apresentados visando confirmar a eficácia do algoritmo proposto.

Palavras-chave—Algoritmo adaptativo, arranjos adaptativos, comunicações móveis, conformação de feixe.

Abstract—This paper presents a new beamforming algorithm for mobile communication systems. Such an algorithm is developed by modifying the optimization problem used for developing the adaptive-projection constrained stochastic gradient (AP-CSG) algorithm. This modification consists of replacing an affine constraint by a quadratic one. As a result, the proposed algorithm, termed here quadratic AP-CSG (QAP-CSG), provides higher signal-to-interference-plus-noise ratio (SINR) than other similar algorithms from the literature. Simulation results are shown aiming to confirm the effectiveness of the proposed algorithm.

Keywords—Adaptive algorithm, adaptive arrays, mobile communications, beamforming.

I. INTRODUÇÃO

Em sistemas de comunicações móveis, a crescente demanda por altas taxas de transmissão tem motivado o desenvolvimento de novas técnicas que visam superar as limitações de capacidade dos sistemas atuais [1]. Nesse contexto, o uso de arranjos de antenas em conjunto com algoritmos de conformação de feixe tem se revelado uma técnica promissora. Isso se deve à capacidade proporcionada por essa técnica de se realizar um ajuste em tempo real da característica de irradiação do arranjo de antenas, o que permite elevar os níveis de razão sinal-interferência-mais-ruído (SINR – *signal-to-interference-plus-noise ratio*) em todo o sistema [1]-[5].

Usualmente, os algoritmos de conformação de feixe são desenvolvidos para operar no modo de recepção, isto é, no canal de subida [*uplink*, sentido terminal móvel para a estação de rádio base (ERB)]. Isso se deve à maior disponibilidade tanto de recursos computacionais quanto de arranjos de

Este trabalho foi parcialmente financiado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

antenas na ERB. Para realizar a conformação de feixe também no canal de descida, tipicamente assume-se a hipótese de reciprocidade direcional, a qual considera a mesma geometria de propagação dos sinais presentes em ambos os canais de subida e de descida. Dessa maneira, o vetor diretor [5] de um dado sinal, que depende unicamente de características geométricas do cenário de propagação, pode ser considerado o mesmo tanto para o canal de subida quanto para o de descida. Como consequência, é possível obter a conformação de feixe do canal de descida a partir dos sinais recebidos no canal de subida [1]. Assim, os algoritmos de conformação de feixe convencionais requerem a utilização de um sinal de referência ou o conhecimento dos ângulos de chegada (AOAs - angles of arrival) dos sinais recebidos pela ERB [5], [6]. Visando eliminar a necessidade de recursos adicionais para obter tais informações, vários algoritmos vêm sendo propostos na literatura com o objetivo de aproveitar características próprias dos sistemas de comunicações. Por exemplo, os algoritmos de conformação de feixe introduzidos em [7], [8] e [9] utilizam os sinais disponíveis na entrada e na saída dos correlatores de sistemas com múltiplo acesso por divisão de código (CDMA code-division-multiple access). Já os algoritmos propostos em [10] e [11], denominados, respectivamente, constrained stochastic gradient (CSG) e improved CSG (ICSG), utilizam amostras individuais do sinal de interesse (SOI - signal of interest) e de cada um dos sinais interferentes presentes no canal de subida. Além disso, o algoritmo adaptive projection CSG (AP-CSG), proposto em [12], realiza a conformação de feixe sem a necessidade de se estimar as amostras individuais de cada sinal interferente. Como principal vantagem de tal algoritmo em relação aos algoritmos CSG e ICSG, destaca-se uma maior facilidade de implementação que possibilita o uso do AP-CSG tanto nos cenários considerados em [10] e [11] quanto em sistemas CDMA [12].

Neste trabalho de pesquisa, um novo algoritmo de conformação de feixe é concebido a partir de uma modificação do problema de otimização utilizado no desenvolvimento do algoritmo AP-CSG. A nova abordagem utiliza o método do gradiente estocástico para a minimização dos sinais interferentes, em conjunto com uma restrição quadrática que substitui a restrição afim originalmente usada em [12] para o desenvolvimento do AP-CSG. Como resultado, um novo algoritmo de conformação de feixe denominado *quadratic* AP-CSG (QAP-CSG) é obtido. Tal algoritmo proporciona valores de SINR superiores aos obtidos pelos algoritmos apresentados em [7]-[12].

Este artigo está organizado como segue. A Seção II revisita o algoritmo AP-CSG. Na Seção III, o desenvolvimento do algoritmo proposto (QAP-CSG) é apresentado. A Seção IV mostra resultados de simulação numérica visando avaliar o desempenho do algoritmo proposto. Finalmente, na Seção V, são apresentadas as conclusões deste trabalho de pesquisa.

Ciro A. Pitz, Eduardo L. O. Batista e Rui Seara, LINSE - Laboratório de Circuitos e Processamento de Sinais, Departamento de Engenharia Elétrica, Universidade Federal de Santa Catarina, Florianópolis-SC, Brasil, E-mails: {ciropitz, seara}@linse.ufsc.br, ebatista@ieee.org.

Ciro A. Pitz é também professor do Departamento de Engenharia Elétrica e Telecomunicações da Universidade Regional de Blumenau (FURB), Blumenau, SC, Brasil.

XXXIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2015, 1-4 DE SETEMBRO DE 2015, JUIZ DE FORA, MG

II. ALGORITMO AP-CSG

O cenário utilizado no desenvolvimento do algoritmo AP-CSG consiste em um arranjo com K antenas situado na ERB e M usuários compartilhando o mesmo canal [12]. Nesse cenário, o sinal recebido pela ERB é definido como

$$y(n) = \mathbf{w}^{\mathsf{H}}(n)\mathbf{x}(n) \tag{1}$$

onde os vetores complexos $\mathbf{w}(n)$ e $\mathbf{x}(n)$ de dimensão *K* denotam, respectivamente, o vetor de conformação de feixe e o vetor de entrada que contém o sinal em banda base recebido em cada antena do arranjo na *n*-ésima iteração.

Para a concepção do algoritmo AP-CSG, considera-se que um vetor $\mathbf{d}(n)$ com amostras instantâneas do sinal de interesse (SOI) em cada antena pode ser estimado a partir do vetor de entrada $\mathbf{x}(n)$. Tal estimativa é obtida aplicando um detector de símbolos em cada antena do arranjo, conforme discutido em [10] e [13], ou ainda usando os sinais disponíveis no correlator de sistemas *direct sequence* CDMA (DS-CDMA) [3]. A partir da estimativa de $\mathbf{d}(n)$, um vetor $\mathbf{z}(n)$ composto pelos sinais interferentes acrescidos do ruído de medição pode ser facilmente obtido subtraindo $\mathbf{d}(n)$ de $\mathbf{x}(n)$ [12], isto é,

$$\mathbf{z}(n) = \mathbf{x}(n) - \mathbf{d}(n).$$
(2)

Assim, com $d(n) \in z(n)$ disponíveis, a SINR instantânea na saída do arranjo, escrita como

$$\tilde{\Gamma}(n) = \frac{\mathbf{w}^{\mathrm{H}} \mathbf{d}(n) \mathbf{d}^{\mathrm{H}}(n) \mathbf{w}}{\mathbf{w}^{\mathrm{H}} \mathbf{z}(n) \mathbf{z}^{\mathrm{H}}(n) \mathbf{w}}$$
(3)

pode ser utilizada como uma função custo para o desenvolvimento de algoritmos de conformação de feixe.

No caso do algoritmo AP-CSG, a estratégia usada para maximizar a SINR consiste na minimização com restrições do denominador de (3), resultando no seguinte problema de otimização:

minimizar
$$\mathbf{w}^{\mathrm{H}} \mathbf{z}(n) \mathbf{z}^{\mathrm{H}}(n) \mathbf{w}$$

sujeito a $\begin{cases} \mathbf{w}^{\mathrm{H}} \mathbf{d}(n) = \rho \\ \| \mathbf{w} \| = 1. \end{cases}$
(4)

A restrição de projeção considerada em (4), a qual depende de um fator de projeção representado por ρ , tem como objetivo principal evitar que **w** seja direcionado para o espaço nulo de **d**(*n*) (espaço nulo do SOI) [12]. Além disso, a restrição de norma unitária visa garantir que a solução obtida não seja **w** = **0** (solução trivial) [12], com **0** representando um vetor de zeros.

Conforme demonstrado em [12], considera-se o método do gradiente estocástico para determinar, em tempo real, os coeficientes de conformação de feixe que solucionam o problema de otimização descrito em (4). Assim, tem-se

$$\mathbf{w}'(n+1) = \mathbf{w}(n) - \mu_1 \nabla L[\mathbf{w}(n), \lambda(n)]$$
(5)

com μ_1 denotando o passo de adaptação, ∇ , o operador gradiente, $\lambda(n)$, um multiplicador de Lagrange, e $L[\mathbf{w}(n), \lambda(n)]$, o lagrangeano formulado considerando somente a restrição de projeção presente em (4) [12]. Dessa forma, o vetor $\mathbf{w}'(n+1)$ obtido através de (5) representa a versão *a posteriori* do vetor de conformação de feixe que deve ser posteriormente normalizado, visando satisfazer a restrição de norma unitária. Quanto à determinação da restrição de projeção, a abordagem proposta em [12] é baseada na escolha de um fator de projeção ρ que, além de evitar que **w** seja direcionado para o espaço nulo do SOI, resulte na maximização do numerador de (3). Para isso, um processo iterativo auxiliar é formulado em [12] a partir da projeção vetorial de **w**(*n*) em **d**(*n*), resultando em um fator de projeção adaptativo dado por

$$\rho(n) = \mathbf{w}^{\mathrm{H}}(n)\mathbf{d}(n)[1+\mu_{2}]$$
(6)

onde μ_2 denota o passo de adaptação da restrição de projeção adaptativa. Em seguida, considerando (6) e determinando $\lambda(n)$ de maneira que a restrição de projeção seja satisfeita para $\mathbf{w}'(n+1)$, é possível reescrever (5) como [12]

$$\mathbf{w}'(n+1) = \mathbf{w}(n) - \mu_1 \left[\mathbf{I} - \frac{\mathbf{d}(n)\mathbf{d}^{\mathrm{H}}(n)}{\| \mathbf{d}(n) \|^2} \right] \mathbf{z}(n) \mathbf{z}^{\mathrm{H}}(n) \mathbf{w}(n) + \mu_2 \frac{\mathbf{d}(n)\mathbf{d}^{\mathrm{H}}(n)}{\| \mathbf{d}(n) \|^2} \mathbf{w}(n).$$
(7)

Finalmente, para se obter o vetor de conformação de feixe que satisfaz a restrição de norma unitária, $\mathbf{w}'(n+1)$ é normalizado [12], isto é,

$$\mathbf{w}(n+1) = \frac{\mathbf{w}'(n+1)}{\parallel \mathbf{w}'(n+1) \parallel}.$$
(8)

III. ALGORITMO PROPOSTO

O algoritmo proposto é derivado a partir da definição de um novo problema de otimização similar ao apresentado em [12]. Para tal, a restrição de projeção presente em (4) é substituída por uma nova restrição que considera diretamente o numerador de (3), isto é,

$$\mathbf{w}^{\mathrm{H}}\mathbf{d}(n)\mathbf{d}^{\mathrm{H}}(n)\mathbf{w} = |\mathbf{w}^{\mathrm{H}}\mathbf{d}(n)|^{2} = \tau$$
(9)

onde τ representa o valor da nova restrição. Comparando (9) com a restrição de projeção dada em (4), nota-se que a nova restrição pode ser interpretada como a versão quadrática da restrição usada pelo algoritmo AP-CSG. Assim, considerando (9) e desconsiderando, em um primeiro momento, a restrição de norma unitária, o lagrangeano do problema de otimização é formulado como segue:

$$L(\mathbf{w},\lambda) = \mathbf{w}^{\mathrm{H}} \mathbf{z}(n) \mathbf{z}^{\mathrm{H}}(n) \mathbf{w} + \lambda [\mathbf{w}^{\mathrm{H}} \mathbf{d}(n) \mathbf{d}^{\mathrm{H}}(n) \mathbf{w} - \tau] \quad (10)$$

com λ representando o multiplicador de Lagrange referente à restrição dada por (9). Em seguida, utilizando o método da descida mais íngreme (*steepest descente method*) [14] para a atualização recursiva de **w**, chega-se à seguinte expressão de atualização dos coeficientes de conformação de feixe:

$$\mathbf{w}'(n+1) = \mathbf{w}(n) - \mu_1 \mathbf{z}(n) \mathbf{z}^{\mathrm{H}}(n) \mathbf{w}(n) - \mu_1 \lambda(n) \mathbf{d}(n) \mathbf{d}^{\mathrm{H}}(n) \mathbf{w} + \mu_1 \frac{\partial [\lambda(n) \tau(n)]}{\partial \mathbf{w}^*(n)}].$$
(11)

Assim, como no algoritmo AP-CSG, o valor de τ é escolhido de maneira que a restrição imposta para o cálculo dos coeficientes *a posteriori* (antes da normalização) seja gradualmente aumentada em relação ao valor da restrição calculada com os valores *a priori* dos coeficientes, isto é,

$$\mathbf{w}^{\prime \mathrm{H}}(n+1)\mathbf{d}(n)\mathbf{d}^{\mathrm{H}}(n)\mathbf{w}^{\prime}(n+1) = \mathbf{w}^{\mathrm{H}}(n)\mathbf{d}(n)\mathbf{d}^{\mathrm{H}}(n)\mathbf{w}(n)[1+\mu_{2}]$$
(12)

onde μ_2 segue a mesma definição da seção anterior. Assim, a partir de (12), obtém-se

$$\tau(n) = \mathbf{w}^{\mathrm{H}}(n)\mathbf{d}(n)\mathbf{d}^{\mathrm{H}}(n)\mathbf{w}(n)[1+\mu_{2}].$$
(13)

Agora, substituindo (13) em (11), o processo de atualização dos coeficientes de conformação de feixe é reescrito como

$$\hat{\mathbf{w}}'(n+1) = \mathbf{w}(n) - \mu_1 \mathbf{z}(n) \mathbf{z}^{\mathrm{H}}(n) \mathbf{w}(n) + \lambda(n) \mu_1 \mu_2 \mathbf{d}(n) \mathbf{d}^{\mathrm{H}}(n) \mathbf{w}(n).$$
(14)

Para se obter o multiplicador de Lagrange $\lambda(n)$, (14) é prémultiplicada pela matriz $\mathbf{d}(n)\mathbf{d}^{\mathrm{H}}(n)$ e a expressão resultante é pré-multiplicada por $\mathbf{w}'^{\mathrm{H}}(n+1)$. Então, considerando (12) e (13), a seguinte equação de segundo grau é obtida para a determinação de $\lambda(n)$:

$$(1+\mu_{2})G_{d}(n) = G_{d}(n) - 2\mu_{1} \operatorname{real}[G_{dz}(n)] + \mu_{1}^{2} \mathbf{w}^{H}(n) \mathbf{z}(n) \mathbf{z}^{H}(n) \mathbf{w}(n) |\mathbf{d}^{H}(n) \mathbf{z}(n)|^{2} + 2\lambda(n)\mu_{1}\mu_{2} ||\mathbf{d}(n)||^{2} G_{d}(n)$$
(15)
$$- 2\lambda(n)\mu_{1}^{2}\mu_{2} ||\mathbf{d}(n)||^{2} \operatorname{real}[G_{dz}(n)] + \lambda^{2}(n)\mu_{1}^{2}\mu_{2}^{2} ||\mathbf{d}(n)||^{4} G_{d}(n)$$

com

$$\mathbf{G}_{\mathbf{d}}(n) = \mathbf{w}^{\mathrm{H}}(n)\mathbf{d}(n)\mathbf{d}^{\mathrm{H}}(n)\mathbf{w}(n)$$
(16)

$$G_{dz}(n) = \mathbf{w}^{\mathrm{H}}(n)\mathbf{d}(n)\mathbf{d}^{\mathrm{H}}(n)\mathbf{z}(n)\mathbf{z}^{\mathrm{H}}(n)\mathbf{w}(n).$$
(17)

Assim,

$$\lambda(n) = \frac{-b(n) + \sqrt{b^2(n) - a(n)c(n)}}{a(n)} \tag{18}$$

com

$$a(n) = \mu_1 \mu_2 \| \mathbf{d}(n) \|^2 \mathbf{G}_{\mathbf{d}}(n)$$
(19)

$$b(n) = \mathbf{G}_{\mathbf{d}}(n) - \mu_{1} \operatorname{real}[\mathbf{G}_{\mathbf{d}z}(n)]$$
(20)

e

$$c(n) = \frac{\mu_1 G_z(n) |\mathbf{d}^H(n) z(n)|^2}{\mu_2 ||\mathbf{d}(n)||^2} - \frac{2 \operatorname{real}[G_{\mathbf{d} z}(n)]}{\mu_2 ||\mathbf{d}(n)||^2} - \frac{G_{\mathbf{d}}(n)}{\mu_1 ||\mathbf{d}(n)||^2}.$$
(21)

Note que, em (18), o sinal positivo da raiz quadrada é escolhido para o cálculo de $\lambda(n)$. Tal escolha é justificada a partir do termo $\lambda(n)\mu_1\mu_2\mathbf{d}(n)\mathbf{d}^{\mathrm{H}}(n)\mathbf{w}(n)$ presente (14), uma vez que o maior valor de $\lambda(n)$ garante o direcionamento de $\mathbf{w}'(n+1)$ para o subespaço formado por $\mathbf{d}(n)$ (SOI).

Em seguida, substituindo (18)-(21) em (14) e manipulando a expressão resultante, obtém-se

$$\mathbf{w}'(n+1) = \mathbf{w}(n) + \chi(n) \frac{\mathbf{d}(n)\mathbf{d}^{\mathrm{H}}(n)}{\|\mathbf{d}(n)\|^{2}} \mathbf{w}(n)$$

$$-\mu_{1} \left[\mathbf{I} - 0.5 \frac{\mathbf{d}(n)\mathbf{d}^{\mathrm{H}}(n)}{\|\mathbf{d}(n)\|^{2}}\right] \mathbf{z}(n) \mathbf{z}^{\mathrm{H}}(n) \mathbf{w}(n)$$
(22)

com

$$\chi(n) = \frac{1}{G_{\mathbf{d}}(n)} \{0, 5\mu_1 G_{\mathbf{d}z}^*(n) + \sqrt{(1+\mu_2)[G_{\mathbf{d}}(n)]^2 - \mu_1^2 \operatorname{Im}[G_{\mathbf{d}z}(n)]^2} \} - 1.$$
(23)

Finalmente, o valor resultante de $\mathbf{w}'(n+1)$ é normalizado de acordo com (8), visando obter uma solução que satisfaça a restrição de norma $\|\mathbf{w}(n+1)\|=1$. O processo iterativo do algoritmo QAP-CSG é sumarizado na Tabela 1.

A Tabela 2 fornece a complexidade computacional dos algoritmos AP-CSG e QAP-CSG. A partir dessa tabela, verifica-se que o algoritmo proposto requer um maior número de operações em cada iteração. Entretanto, apesar da maior complexidade computacional, o algoritmo QAP-CSG mantém a mesma ordem de complexidade $\mathcal{O}(K)$ do algoritmo AP-CSG original.

TABELA 1	
SUMÁRIO DO ALGORITMO QAP-CSG	

Para $i = 1, 2,, M$
Inicializar $\mathbf{w}(0)$
Para $i = 1, 2,, M$
Para $n = 0, 1, 2, 3$
$\mathbf{G}_{\mathbf{d}}(n) = \mathbf{w}^{\mathrm{H}}(n)\mathbf{d}(n)\mathbf{d}^{\mathrm{H}}(n)\mathbf{w}(n)$
$\mathbf{G}_{\mathbf{d}\mathbf{z}}(n) = \mathbf{w}^{\mathrm{H}}(n)\mathbf{d}(n)\mathbf{d}^{\mathrm{H}}(n)\mathbf{z}(n)\mathbf{z}^{\mathrm{H}}(n)\mathbf{w}(n)$
$\chi(n) = \frac{1}{\mathbf{G}_{\mathbf{d}}(n)} \{0, 5\mu_{\mathbf{l}} \mathbf{G}_{\mathbf{d}z}^{*}(n)$
+ $\sqrt{(1+\mu_2)[G_d(n)]^2 - \mu_1^2 Im[G_{dz}(n)]^2}$ } -1
$\mathbf{w}'(n+1) = \mathbf{w}(n) + \chi(n) \frac{\mathbf{d}(n)\mathbf{d}^{\mathrm{H}}(n)}{\ \mathbf{d}(n)\ ^{2}} \mathbf{w}(n)$
$-\mu_1\left[\mathbf{I}-0, 5\frac{\mathbf{d}(n)\mathbf{d}^{\mathrm{H}}(n)}{\ \mathbf{d}(n)\ ^2}\right]\mathbf{z}(n)\mathbf{z}^{\mathrm{H}}(n)\mathbf{w}(n)$
$\mathbf{w}(n+1) = \frac{\mathbf{w}'(n+1)}{\ \mathbf{w}'(n+1)\ }$

TABELA 2 Complexidade computacional dos algoritmos AP-CSG e QAP-CSG

Algoritmo	Número de operações reais por iteração				
	Multiplicações	Adições	Divisões	Raiz quadrada	
AP-CSG	28K + 6	24K - 4	2	1	
QAP-CSG	38K + 27	30K + 2	3	2	

IV. RESULTADOS DE SIMULAÇÃO

Nesta seção, resultados de simulação de Monte Carlo (MC) são apresentados (média de 200 realizações independentes) visando avaliar o desempenho do algoritmo QAP-CSG. Todos os cenários de simulação aqui considerados usam um arranjo ULA (d = $\lambda/2$ na frequência de 1 GHz) com K = 8 antenas omnidirecionais, L = 12caminhos multipercurso independentes e ângulo de espalhamento $\Delta \theta = 5^{\circ}$ em torno do AOA de cada terminal móvel. Além disso, os canais independentes com desvanecimento de Ravleigh são gerados multiplicando o vetor diretor de cada caminho multipercurso por uma variável aleatória complexa gaussiana (média nula e variância 1/L) cujo valor é modificado a cada iteração do algoritmo. Para inicialização do vetor de conformação de feixe, considera-se o caso de ganho unitário em todas as direções, isto é, $\mathbf{w}(0) = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}^T$ para todos os algoritmos.

A. Rejeição de Interferência Cocanal

Dois casos são aqui considerados para a comparação de desempenho entre os algoritmos ICSG [11], AP-CSG [12] e QAP-CSG (proposto). No primeiro caso (denominado Caso I), o cenário é formado por um SOI (proveniente da célula em questão) localizado em $\theta_1 = 0^\circ$ e dois sinais interferentes (provenientes de células cocanal) localizados em $\theta_2 = 20^\circ$ e $\theta_3 = -20^\circ$. No segundo caso (denominado Caso II), o SOI e o primeiro sinal interferente apresentam o mesmo AOA dado por $\theta_1 = \theta_2 = 0^\circ$, enquanto o AOA do segundo interferente é mantido em $\theta_3 = -20^\circ$. Em ambos os casos, a potência de transmissão é fixada em $P_1 = 36 \text{ dB}$ para o SOI e $P_2 = P_3 = 15 \text{ dB}$ para os sinais interferentes. Além disso, passos de adaptação $\mu_1 = \mu_2 = 0,01$ são utilizados para os algoritmos AP-CSG e QAP-CSG, enquanto o algoritmo ICSG é configurado com $\mu_s = \mu_u = 0,005$. A partir das curvas de SINR mostradas na Fig. 1(a), observa-se que, no Caso I, o algoritmo proposto (QAP-CSG) proporciona uma SINR 9 dB superior do que a proporcionada pelo ICSG e 2 dB superior do que a do AP-CSG. Na mesma figura, constata-se que o algoritmo QAP-CSG apresenta a maior velocidade de convergência dentre os algoritmos avaliados. O melhor desempenho do algoritmo QAP-CSG pode ser confirmado através dos diagramas de irradiação ilustrados na Fig. 1(b), a partir dos quais é possível verificar que o algoritmo proposto proporciona menor ganho na direção dos sinais interferentes (marcados com 'x'), enquanto mantém ganho adequado na direção do SOI (representado por 'o'). No Caso 2, mesmo com o sinal interferente situado na mesma direção do SOI, o algoritmo QAP-CSG novamente proporciona o melhor desempenho dentre os algoritmos considerados, exibindo uma maior velocidade de convergência como também uma maior SINR na recepção dos sinais.

B. Rejeição de Interferência em Sistemas CDMA

Agora, um sistema DS-CDMA (direct-sequence CDMA) é considerado para comparar o desempenho dos algoritmos de [8] e [9] e os do AP-CSG e do QAP-CSG (proposto). Nesse sistema, $\mathbf{d}(n) = \mathbf{x}(n)$ correspondem, respectivamente, aos sinais na saída e na entrada dos correlatores CDMA aplicados em cada antena do arranjo. Como em [8], $\mathbf{x}(n)$ é obtido a partir da dizimação do sinal na entrada dos correlatores CDMA de maneira a obter a mesma taxa de atualização de d(n). Os símbolos transmitidos são gerados a partir de uma constelação binary phase-shift keying (BPSK) e apenas um finger CDMA perfeitamente sincronizado com o SOI é considerado. Nesse contexto, dois casos (denominados Caso III e Caso IV) são considerados. No Caso III, o cenário é formado por um SOI, com ganho de processamento 16, posicionado em $\theta_1 = 45^\circ$ e três usuários interferentes, com ganho de processamento 64, localizados, respectivamente, em $\theta_2 = -60^\circ$, $\theta_3 = 40^\circ$ e $\theta_4 = 60^\circ$. Em seguida, no Caso IV, o cenário considerado apresenta um maior nível de interferência, visto que o SOI e um sinal interferente estão posicionados na mesma direção ($\theta_1 = \theta_2 = 0^\circ$), enquanto outros oito sinais interferentes atingem o arranjo com AOAs de $\theta_3 = -85^\circ$, $\theta_4 = -70^\circ$, $\theta_5 = -50^\circ$, $\theta_6 = -30^\circ$, $\theta_7 = 45^\circ$, $\theta_8 = 60^\circ$, $\theta_9 = 70^\circ$ e $\theta_{10} = 90^\circ$. Nesse caso, utiliza-se ganho de processamento 64 para todos os usuários. Além disso, em ambos os casos, todos os terminais móveis estão localizados na mesma célula, a potência de transmissão é fixada em $P_i = 10 \text{ dB}$ e os passos de adaptação $\mu_1 = \mu_2 = \mu = 0,01$ são usados por todos os algoritmos. As curvas de SINR e os diagramas de irradiação, ilustrados, respectivamente, nas Figs. 3 e 4, corroboram o desempenho superior do algoritmo QAP-CSG, o qual proporciona a maior qualidade de recepção dentre os algoritmos avaliados.

Fig. 1.Caso I. (a) Curvas de SINR e (b) diagramas de irradiação.

Fig. 2. Caso II. (a) Curvas de SINR e (b) diagramas de irradiação.

Fig. 3 - Caso III. (a) Curvas de SINR e (b) diagramas de irradiação.

Fig. 4 - Caso IV. (a) Curvas de SINR e (b) diagramas de irradiação.

V. CONCLUSÕES

Neste artigo, um novo algoritmo de conformação de feixe para sistemas de comunicações móveis foi proposto. Esse algoritmo (denominado aqui QAP-CSG) foi desenvolvido a partir da substituição da restrição afim usada no algoritmo AP-CSG por uma restrição quadrática. Comparado com outros algoritmos da literatura, o novo algoritmo proporcionou maiores valores de SINR, mantendo a mesma ordem de complexidade computacional de seu predecessor, o algoritmo AP-CSG. Resultados de simulação numérica confirmaram a eficácia do algoritmo proposto.

REFERÊNCIAS

- C. A. Balanis and P. I. Ioannides, *Introduction to Smart Antennas*. San Rafael, CA: Morgan & Claypool Publishers, 2007.
- [2] T. S. Rappaport, *Wireless Communications: Principles and Practice*. 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 2002.
- [3] F. Molisch, Wireless Communications. Chichester: John Wiley & Sons, 2010.
- [4] G. L. Stüber, Principles of Mobile Communication. 3rd ed. New York, NY: Springer, 2011.
- 5] L. C. Godara, Smart Antennas. Boca Raton, FL: CRC Press, 2004.
- [6] B. Allen and M. Ghavami, Adaptive Array Systems: Fundamentals and Applications. Chichester: John Wiley & Sons, 2005.
- [7] S. Choi and D. Shim, "A novel adaptive beamforming algorithm for a smart antenna system in a CDMA mobile communication environment," *IEEE Trans. Vehicular Technology*, vol. 49, no. 5, pp. 1793-1806, Sep. 2000.
- [8] S. Choi, J. Choi, Heung-Jae Im, and B. Choi, "A novel adaptive beamforming algorithm for antenna array CDMA systems with strong interferers," *IEEE Trans. Vehicular Technology*, vol. 51, no. 5, pp. 808-816, Sep. 2002.
- [9] C. A. Pitz, E. L. O. Batista, and R. Seara, "A blind beamforming algorithm for antenna arrays in cellular CDMA systems," in *Proc. 2014 International Telecommunications Symposium (ITS)*, São Paulo, SP, Sep. 2014, pp. 1-5.
- [10] D. R. Morgan, "Downlink adaptive array algorithms for cellular mobile communications," *IEEE Trans. Communications*, vol. 51, no. 3, pp. 476-488, Mar. 2003.
- [11] J. Kolodziej, O. J. Tobias, R. Seara, and D. R. Morgan, "On the constrained stochastic gradient algorithm: model, performance, and improved version," *IEEE Trans. Signal Process.*, vol. 57, no. 4, pp. 1304-1315, Apr. 2009.
- [12] C. A. Pitz, E. L. O. Batista, and R. Seara, "On the joint beamforming and power control in cellular systems: algorithm and stochastic model," *IEEE Trans. Wireless Commun.*, vol. 13, no. 12, pp. 6943–6954, Dec. 2014.
- [13] G. G. Raleigh and V. K. Jones, "Adaptive antenna transmission for frequency duplex digital wireless communication," in *Proc. IEEE Int. Conf. Communications*, Montreal, Canada, Jun. 1997, vol. 2, pp. 641-646.
- [14] B. Farhang-Boroujeny, Adaptive Filters: Theory and Applications. New York, NY: John Wiley & Sons, 1998.