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Abstract This paper proposes distributed adaptive 
algorithms based on the conjugate gradient (CG) method and the 
consensus strategy for parameter estimation over sensor 
networks. In particular, we present a conventional distributed 
CG algorithm and a distributed CG algorithm that exploits 
sparsity in the set of parameters using l1 and log-sum penalty 
functions. The proposed consensus distributed CG (Consensus-
CG) algorithm has an improved performance in terms of mean 
square deviation (MSD) and convergence as compared with the 
consensus least-mean square (Consensus-LMS) algorithm and a 
close performance to the consensus distributed recursive least-
squares (Consensus-RLS) algorithm. Similar results are obtained 
with the proposed sparsity-aware consensus distributed CG 
algorithm. Numerical results show that the proposed algorithms 
are reliable and can be applied in several scenarios. 

Keywords  Distributed Processing, Conjugate Gradient, 
Sparsity Aware. 

I. INTRODUCTION 
For several years, sensor networks have been applied in 

medicine, industry, agriculture, etc. Distributed processing has 
become a very common and useful approach to extract 
information in a network by performing estimation of the 
desired parameters. The efficiency of the network depends on 
the communication protocol used to exchange information 
between the nodes, as well as the algorithm to obtain the 
parameters. Another important aspect is to prevent a failure in 
any agent that may affect the operation and the performance of 
the network. Similar to a single node adaptive processing, the 
performance of the network may vary in time. Distributed 
schemes can offer better estimation performance of the 
parameters as compared with the centralized approach, based 
on the principle that each node communicates with the other 
nodes and exploits the spatial diversity in the network [1]. 

The main strategies for communication in distributed 
processing are incremental, consensus and diffusion. In the 
incremental protocol, the communication flows cyclically and 
the information is exchanged from one node to the adjacent 
nodes. In this strategy the flow of information must be preset at 
the initialization [2]. In the diffusion mechanism, each node 
communicates with the rest of the nodes [3]. The consensus 
strategy is an elegant procedure to enforce agreement among 
cooperating nodes [4].  

In many scenarios, the impulse responses of unknown 
systems can be assumed to be sparse, containing only a few 

large coefficients interspersed among many negligible ones [5]. 
Many studies have shown that exploiting the sparsity of a 
system is beneficial to enhancing the estimation performance 
[6]. Most of the studies developed for distributed processing 
exploiting sparsity are focused on the least-mean square (LMS) 
and recursive least-squares (RLS) algorithms  using different 
penalty functions [7]-[9]. These penalty functions perform a 
regularization that attracts to zero the coefficients of the 
parameter vector that are not associated with the weights of 
interest. The most well-known and exploited penalty functions 
are the l0-norm, the l1-norm and the log-sum  [10]. With these 
techniques a better network performance is achieved, in the 
presence of sparsity in the set of  parameters.  

The Conjugate Gradient (CG) algorithm [11] has been 
studied and developed for distributed processing, using the 
diffusion strategy [11], which often results in algorithms that 
are more computationally complex than consensus techniques. 
The faster convergence performance of CG algorithms over the 
LMS algorithm and its lower computational complexity and 
better numerical stability than the RLS algorithm makes it 
suitable for this task.  However, prior work on distributed CG 
techniques is rather limited as  a consensus-type algorithm and 
techniques that exploit possible sparsity of the signals  have not 
been developed so far. 

In this paper we propose distributed CG algorithms based 
on the consensus strategy for parameter estimation over sensor 
networks. Specifically, we develop a distributed CG algorithm 
using the consensus protocol and a sparsity-aware CG 
algorithm with l1 and log-sum penalty functions. The proposed 
algorithms are compared with recently reported algorithms in 
the literature. The particular application presented in this paper 
is parameter estimation over sensor networks, which can be 
found  in many scenarios of practical interest.      

This paper is organized as follows. Section II describes the 
system model and the problem statement. Section III presents 
the proposed distributed consensus CG algorithm. Section IV 
details the proposed sparsity-aware distributed consensus CG 
algorithm. Section V presents and discusses the simulation 
results. Finally, Section VI gives the conclusions and discusses 
possible future directions.    

Notation: In the following parts of this paper, matrices and 
vectors are denoted by boldface upper case letters and boldface 
lower case letters, respectively. The superscript (·)H denotes the 
Hermitian operator. The ||· ||1 denotes the 11 norm and the E[·] 
denotes the expectation operator. 
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II. SYSTEM MODEL AND PROBLEM STATEMENT  
 

In this section, we describe the system model of the 
distributed estimation scheme and introduce the problem 
statement. 

A. System Model 
The network consists of N nodes that exchange information 

between them, where each node represents an adaptive 
parameter vector with neighborhood described by the set Nk. 
The main task of the parameter estimation problem is to adjust 
the unknown M x 1 weight vector k of each node, where M is 
the length of the filter [1]. The desired signal dk,i at each time i 
is a scalar random process given by   

                               ,,,0, ikik
H

ik nd x                         (1) 
where 0 is the M x 1 system weight vector, xk,i is the M x 1 
input signal vector and nk,i is the measurement noise. The 
output estimate is given by 

                                     ,,,, ik
H

ikiky x                              (2)                             
The main goal of the network is to minimize the following 

cost function: 

                      .)(
1

2
,,,,

N

k
ik

H
ikikik dC x                (3) 

By solving this minimization problem it is possible to 
obtain the optimum solution of the weight vector at each node. 
The optimum solution for the cost function is given by  

                             ikikik ,
1

,, bR ,                                  (4) 
where Rk,i =E[xk,i xk,iH] is the M x M correlation matrix of the 
input data vector xk,i,  and bk,i =E[dk,i xk,i ] is the M x 1 cross-
correlation vector between the input data and the desired 
response dk,i. 
 

B. Problem Statement 
We consider a consensus algorithm for a network where 

each agent k has access at each time instant to the realization 
{dk,i , xk,i} of zero-mean spatial data {dk , xk}[12][15]. 

For a network with possibly sparse parameter vectors, the 
cost function also involves a penalty function which exploits 
sparsity. In this case the network needs to solve the following 
optimization problem: 
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where )( ,ikf  is a penalty  function that exploits the sparsity 
in the parameter vector ik, . The consensus cooperation 
strategy is a constrained optimization problem that enforces the 
equality of the parameter vectors ik, [17], which means all 
network agents converge to the same weight value, i.e.,  

kmk NmKk ,,...,2,1, . 

In the following sections we focus on distributed CG   
versions of the consensus protocol algorithm to solve (5).  

III. PROPOSED DISTRIBUTED CONSENSUS CG  
In this section, we present the proposed distributed CG 

algorithm using the consensus strategy with a penalty function 
that is equal to zero. This corresponds to the consensus strategy 
without the exploitation of sparsity. We first derive the CG 
algorithm and then consider the consensus protocol. 

A. Derivation of the CG algorithm 
The CG method can be applied to adaptive filtering 

problems [11] [16]. The main objective in this task is to solve 
equation (4). The cost function of the CG algorithm for one 
agent is given by 

                        .
2
1)( bR HH

CGC                         (6) 

For distributed processing over sensor networks, we 
present the following derivation. The CG algorithm does not 
need to solve the matrix inversion of R, which is an advantage 
as compared with RLS algorithms. It computes the weights 

k,i for each iteration j until convergence, i.e., k,i (j). The 
gradient of the method in the negative direction is obtained as 
follows [11]:  

 
                         )()()()( ,,,, jjjj ikikikik Rbg                     (7) 

 
Calculating the Krylov subspace [13] through different 

operations, the recursion is given by 
 

                        ),()()1()( ,,, jjjj ikikik p                (8) 
where p is the conjugate direction vector of g 
size that minimizes the cost function in (6) by replacing (7) in 
(4). Both parameters are calculated as follows 

                  

                    
)()()(

)1()1(
)(

,,,

,,

jjj
jj

j
ikik

H
ik

ik
H

ik

pRp
gg

 ,                       (9) 
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The parameter  is calculated using the Gram-Schmidt 
orthogonalization procedure [14].  
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      Applying the CG method to a distributed network the cost 
function is expressed based on the information exchanged 
between all nodes . Each of the equations presented 
so far takes place at each agent during the iterations of the CG 
algorithm. Therefore, we have the cost function: 
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Using the data window with an exponential decay, the 

resulting autocorrelation and cross-correlation matrices are 
defined using the  parameter, which is the same as the 
forgetting factor of the RLS algorithm. The correlation and 
cross-correlation functions are given by 
 
                        H

ikikikik ,,1,, xxRR                               (13) 
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B. Consensus Distributed CG algorithm 
In the consensus strategy, all nodes interact with their 

neighbors sharing and reaching agreement about the system 
parameter vector. Each node k is able to run its update 
simultaneously with the other agents [1] [3]. Fig.1 illustrates 
the consensus strategy.   
 

 
Fig. 1 Distributed consensus-based network processing 

 
In consensus techniques there is a cooperation factor that is 

a convex combination of the iterations available at the 
neighborhood of agent k. This combination is then updated 
with the previous value of the node. This mechanism performs 
adaptation and learning at the same time [3].  

For consensus distributed algorithms the combination step 
is based on the connectivity among nodes, where the local 
estimation is given by  

                    ,1,1,
kNl illkil a                             (15) 

where alk  represents the combining coefficients of the data 
fusion which should comply with 
                            kNla

l
iklk 1,,1                              (16)  

     The consensus cooperation strategy imposes a 
mathematical constraint so that all connected agents converge 
to the same parameter vector ik, : 

  kmk NmKk ,,...,2,1, ,               (17) 
                      

In this work the strategy adopted for the alk combiner is the 
Metropolis rule [1], given by 

0

,1

,
)max(

1

/

,

kk

kNl lklk

lk
lk

a

lkaa

lk
nn

a

k
 

 
The proposed distributed Consensus CG algorithm based 

on the derivation steps obtains the updated weight substituting 
(15) in (8), giving as result:  

                 ).()()()( ,,,, jjjj ikikikik p                  (18) 

The pseudo-code of the proposed distributed consensus CG 
algorithm is presented  in TABLE I 

TABLE I.  PSEUDO CODE OF THE CONSENSUS CG ALGORITHM 
Parameter initialization 

k,0 =0; R(0)=I  
 for each time instan  
   for each agent k  

     
kNl illkil a 1,1,               

     for each CG iteration j =1 until convergence 

       
)()()(

)1()1(
)(

,,,

,,

jjj
jj

j
ikik

H
ik

ik
H

ik

pRp
gg

 

       )()()()( ,,,, jjjj ikikikik p  
       )1()()1()( ,,,,, jjjj ikikikikik pRgg  

       
)1()1(

)()(
)(

,,

,,

jj
jj

j
ik

H
ik

ik
H

ik

gg
gg
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     end for 
    )(,, lastikik j        
   end for 
end for 

C. Computational Complexity 
The computational complexity of the proposed distributed 

Consensus CG algorithm has a cost of order O(M2) that 
depends on the connectivity of the network as well as the 
number of iterations J.  

IV. PROPOSED SPARSITY-AWARE DISTRIBUTED CONSENSUS 
CG 

Based on the previous development of a distributed CG 
algorithm, the following description presents the general 
strategy of distributed sparsity-aware consensus CG using l1 
(ZA) and log-sum (RZA) norm penalty functions. 

A. ZA CG algorithm 
The cost function in this case is given by  
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where f1 denotes the l1 penalty function (ZA) and is defined by 
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Applying the partial derivation of the penalty function gives 
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The pseudo-code with the solution of the algorithm for this 
case is presented in TABLE II 
TABLE II.  PSEUDO CODE OF THE SPARSITY-AWARE CONSENSUS 

CG ALGORITHM 
Parameter initialization 

k,0 =0; R(0)=I  
for each time ins  
  for each agent k N 
    

kNl illkil a 1,1,  

     for each CG iteration j from 1 until convergence 
      )()()()( ,,,, jjjj ikikikik p   
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     end for 
     )1sgn()( ,,, iklastikik j  
  end for 
end for 

 

B. RZA CG algorithm 
 When the logarithmic penalty function f2 is used in the cost 
function, we have 
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The partial derivative of the penalty function applied with 
respect to   is shown below.  
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 The recursions for the RZA consensus CG are similar to 
the ZA consensus CG. The main difference lies in the weight 
update recursion described by 
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In both cases these sparsity-aware algorithms attract to zero 
the values of the parameter vector which are very small or are 
not useful. This results in an algorithm with a faster 
convergence and lower MSD values as can be seen in 
following sections.    

C. Computational Complexity 
Similarly to the standard version of the proposed distributed 

consensus CG the sparsity-aware version has a quadratic 
computational cost, which depends on the number of nodes 
connected and the CG iterations. TABLE III shows the 
operations in terms of additions and multiplications. 

 
TABLE III. COMPUTATIONAL COMPLEXITY FOR CONSENSUS CG 

METHOD 
       Method Additions Multiplications 

Consensus_CG 3LM +LJ(M2+4M-2) L(M2+2M)+LJ(3M2+2M) 
ZA-Consensus-CG 3LM +LJ(M2+4M-2) L(M2+2M)+LJ(3M2+3M) 

RZA-Consensus_CG 3LM +LJ(M2+3M-1) L(M2+2M)+LJ(3M2+3M) 
 

V. SIMULATION RESULTS 
In this work we evaluated the proposed standard distributed 

consensus CG algorithm as well as the sparsity-aware versions. 
The results are compared with the LMS [6] and RLS [8] 
algorithms based on the mean square deviation MSD of the 

network. We consider a network with 20 nodes and 1000 
iterations per run. Each iteration corresponds to a time instant. 
The results are averaged over 100 experiments. The length of 
the filter is 20 and the variance of the input signal is equal to 1, 
which has been modeled as a complex Gaussian noise with a 
variance of 0.001.   

A. Performance comparison between proposed standard and 
sparsity-aware distributed consensus CG algorithms. 
The parameters of the simulations for each algorithm and 

the network were set to ensure an optimized performance. In 
the case of the sparsity-aware algorithm the system parameter 
vector was set with two values equal to one and the remaining 
parameters were set to zero. After all the iterations, the 
performance of each algorithm in terms of MSD is shown in 
Fig. 2. The results show, that the RZA-Consensus-CG 
outperforms both ZA Consensus-CG and standard Consensus-
CG methods in terms of convergence speed and MSD values at 
steady state. 
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Fig. 2 umber for distributed 
consensus standard and sparse-aware CG versions with =0.99, ZA=0.5*10-4, 

RZA =1*10-3 =10-3, S=2/20. Number of CG iterations J =5.  
 
Different sparsity levels s were considered for the proposed 

algorithms. Fig.3 shows the MSD behavior of the RZA version 
for different levels of sparsity s.  
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Fig. 3 

=0.5*10-3 -3, S=1/20, 5/20, 10/20. 
Number of CG iterations J = 5. 
 

It can be noticed in Fig.3 that if the number of nonzero 
values is increased the algorithm will take longer to converge 
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and the deviation will be larger as compared to a sparse system 
with a lower number of nonzero values.  

B. Comparison between LMS, RLS and the proposed 
distributed consensus CG algorithms. 
The proposed algorithms were also compared with the 

distributed versions of the well-known LMS and RLS 
algorithms. Fig. 4 bellow shows the MSD of a network where 
the RZA version of the consensus LMS [6], RLS [8] and CG 
version were tested. 
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Fig. 4  RZA distributed 
consensus standard and sparse- RLS=0.99, CG=0.99 

RZA_RLS=10-3, RZA_RLS=5*10-4, RZA_CG=10-3 -3, S=2/20. Number 
of CG iterations J = 5 

C. Comparison between consensus CG algorithms and 
diffusion CG. 
In Fig.5 it is presented the MSD simulation of the CTA-CG 

[12] and the consensus CG algorithms. 
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Fig. 5 MS
diffusion CTA CTA=0.99 99, -2, 

RZA=0,2*10-3, S=4/20, Number of CG iterations J = 5 
 

 It can be observed that the diffusion CG algorithm has a 
faster convergence as compared to the consensus CG, but in 
contrast the consensus protocol with sparsity reaches a lower 
MSD value at steady state.     

VI. CONCLUSIONS 
 In this work we have proposed distributed consensus CG 

algorithms for parameter estimation over sensor networks. The 
proposed distributed CG algorithm using a consensus protocol 
has a faster convergence than the LMS and a very similar 
performance to the RLS. Simulation results have shown that 
the developed consensus CG and sparsity-aware consensus CG 
algorithms are suitable techniques for adaptive parameter 
estimation problems and can be employed in other 
applications. Due to the conditions of sparse parameter vectors, 
we will consider for future work the development of a strategy 
that allows one to transmit compressed data.   
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