
XXXIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2015, 1-4 DE SETEMBRO DE 2015, JUIZ DE FORA, MG

On the Interoperability of Bufferbloat Solutions
Thiago Cardozo, Alex Borges Vieira, Artur Ziviani, Ana Paula Couto da Silva

Abstract— Bufferbloat phenomenon is related to the excessive
packet queuing in over-sized buffers inside the network that may
lead to network performance degradation. In this context, we
observe a lack of experimental results considering the practi-
cal aspects of off-the-shelf network devices. In this paper, we
present a systematic analysis of the bufferbloat phenomenon
considering the microscopic view of the buffer architecture of
typical network devices. Moreover, we evaluate the most common
fighting bufferbloat solutions recently proposed in the literature,
such as BQL, CoDel, FQ-CoDel, and PIE. In fact, we have
only observed bufferbloat effects under particular configurations.
Second, all approaches we have tested are efficient against
bufferbloat, although presenting different performances. Finally,
mechanism we have evaluated can interoperate. We only notice
a bad performance under a misconfigured BQL; actually results
suggest a misconfigured BQL is worse than no BQL at all.

Keywords— Bufferbloat, AQM, CoDel, BQL, FQ-CoDel, PIE

I. INTRODUCTION

An increase on Internet end-to-end latency has been ob-

served in recent years [17]. The bufferbloat phenomenon is

usually pointed out as one of the possible causes of this

increasing latency. In fact, the past couple of years has

witnessed many works in the networking community about

bufferbloat [19], [14], [5], [11], [1]. In short, bufferbloat occurs

as a consequence of excessively large buffers at network de-

vices, specially routers. These large buffers create a significant

delay, which persists for long periods, thus degrading the

network performance [7].

Queues in network routers absorb traffic bursts avoiding data

loss, but buffer sizing is a recurrent challenge in the network

area [2]. Excessively large buffers may defeat the fundamental

congestion avoidance algorithm of TCP (Transmission Control

Protocol), the most common Internet transport protocol. More

precisely, TCP implicitly detects congestion when noticing

packet loss [12]. As buffers at routers are over-sized, the queue

occupation increases without the TCP connections reducing

their transfer rates. Such a behavior leads to large end-to-end

delays caused by the extra overload in the network.

The buffer sizing problem, and its consequences to exces-

sive delay, has been recognized as early as 1985 [18]. Cur-

rently, there is a number of solutions addressing the bufferbloat

issue [19], [9]. Most of these solutions are new Active Queue

Management (AQM) policies, which enable an Internet router

to inform the senders that they need to reduce the sending rate

before the buffer becomes full, allowing routers to maintain

relatively small queues and thus avoiding bufferbloat [13].

Thiago Cardozo Computer Science Department, UFF, Brazil. Alex
Borges Vieira Computer Science Department, UFJF, Brazil. Artur
Ziviani Computer Science Department, LNCC, Brazil. Ana Paula
Couto da Silva Computer Science Department, UFMG. Brazil. E-
mails: boubee.thiago@gmail.com,alex.borges@ufjf.edu.br, ziviani@lncc.br,
ana.coutosilva@dcc.ufmg.br. This work was partially supported by CNPq,
FAPEMIG and FAPERJ.

In this paper, we present a systematic evaluation of dif-

ferent bufferbloat solutions. The solutions we consider are

BQL (Byte Queue Limits) [9], CoDel [19], PIE [20], and FQ-

Codel [10], the most common bufferbloat fighting approaches.

While BQL limits TCP transfers, the remainder are new AQM

approaches. We also evaluate the interoperability of these

solutions and possible mutual effects. All those solutions are

available on Linux-based devices, running Linux kernels from

version 3.10 onwards.

We have assessed the effects of these proposed solutions

on the bufferbloat phenomenon, considering a typical network

device architecture. We have evaluated key network metrics,

such as the end-to-end latency and throughput while varying

the size of the involved network buffers. Our experiments

have been conducted in a controlled testbed, using commercial

hardware and open-source software.

Our experimental results show that BQL, CoDel, PIE,

and FQ-CoDel are effective in fighting the bufferbloat phe-

nomenon. When we disable these solutions we experience an

excessive latency, characterizing the bufferbloat. For example,

comparing a typical bufferbloat scenario with the system’s

standard configuration, we observe an increase of up to 585%

in the end-to-end delay. In contrast, using BQL or CoDel, no

significant impact in the analyzed metrics are observed. In

this case, the resulting end-to-end delay is around 0.5% larger

than the latency under the same system’s conditions without

the analyzed solutions.

Moreover, we also present an analysis considering the

coexistence of the solutions available in recent kernels of

Linux operating systems that were incorporated to mitigate

the bufferbloat effects. In this case, end-to-end delay in a

typical bufferbloat scenario can be negligible. However, a

misconfiguration of BQL can reduce CoDel efficiency and, in

this case, end-to-end latency is 17K% higher when compared

with a scenario with an auto-tuned BQL.

II. BUFFERBLOAT

Queues in packet-switched networks are used to absorb

bursts on packet arrival rates that can vary significantly in

short periods of time [19]. Nowadays, due to the low cost

of memory in routers, it is usual to find large amounts of

buffering capacity in network devices, even in the simplest

versions. The manufacturer’s premise is that a large buffering

capacity avoids packet loss, improving the network quality of

service to the end user.

However, the scenario where network devices present large

amounts of buffering introduces the problem recently known

as the bufferbloat phenomenon [7], [19]. The excessive packet

buffering results in large end-to-end latency as well as through-

put degradation. In fact, large buffers (and queues) in routers

is not a recent problem [18]. In a network with infinite queues

XXXIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2015, 1-4 DE SETEMBRO DE 2015, JUIZ DE FORA, MG

and packets with limited lifetime, the throughput tends to zero.

This occurs because packets are enqueued for a long time

and they expire their lifetimes before (or just after) they are

forwarded by routers.

More precisely, the vast majority of Internet applications,

including the Web, uses TCP as transport protocol. The

TCP congestion control algorithm adjusts its transfer rate in

face of an increasing latency, avoiding an unnecessary path

saturation [12]. This algorithm considers, at a first instance,

packet drops as an implicit indication of network congestion.

This probing approach, combined with large FIFO-like buffers,

leads to a significant buffer filling. As packet drops occur

only when buffers are completely full, the use of large buffers

may result on malfunctioning of the TCP congestion control

algorithm. As a consequence, the TCP congestion control

algorithm does not adjust its transmission rate adequately,

degrading network performance.

In short, bufferbloat may be the key cause of the increasing

end-to-end latency observed nowadays in the Internet. Large

buffering may reduce the TCP performance, thus impacting

the quality of the vast majority of Internet applications. This

potential negative impact on network performance motivates

the further investigation of the bufferbloat issue and its prac-

tical implications.

III. BUFFERBLOAT RECENT SOLUTIONS

There is a number of proposals in recent literature aiming

at reducing the bufferbloat impact. Typically, such solutions

work on the transport or network layers.

Solutions in the transport layer keep the network core unal-

tered. The adoption of such solutions is limited to updates on

end hosts, such as applying operating systems kernel patches

or updating domestic router firmwares. Typical solutions in

the transport layer target delay-based congestion control, such

as Low Priority Congestion Controls (LPCC) [5] algorithms.

One of the most popular LPCCs is LEDBAT (Low Extra Delay

Background Transport), which is a TCP alternative protocol

originally created for Bittorrent P2P networks. Chirichella and

Rossi [5] show that LEDBAT prevents the increased delay

caused by queuing for most of Bittorrent users. A recurrent

issue involving delay-based congestion controls, like LEDBAT

or even the more traditional TCP Vegas [3], is the unfairness in

concurrent flows. These delay-based congestion controls may

lead to an irregular bandwidth distribution among applications,

reducing the user quality of experience.

Solutions in the network layer involve AQM algorithms,

such as Random Early Detection (RED) [6] and its variants,

and need to be implemented in routers. Moreover, they tend to

be hard to configure and to adapt to constant traffic changes in

networks [7]. To fight bufferbloat, Nichols and Jacobson [19]

proposed the CoDel queue management algorithm in a direct

response to the recent bufferbloat phenomenon [7]. CoDel

essentially intends to detect bad queues, which are those

that grow harmfully without signs of deflation. In face of a

bad queue, CoDel intentionally starts a packet drop phase

in order to induce the activation of the TCP congestion

control. CoDel is auto-configurable, which is an advantage

over traditional AQM solutions. Despite its advantages, the

use of CoDel during the TCP slow start phase is not expected

to be effective [21]. This issue may be a problem because

nowadays a vast number of TCP connections are very short.

Recent Linux kernels (i.e. newer than 3.3.0) present a new

feature that attempts to solve the buffer sizing problem of net-

work devices. This mechanism, known as Byte Queue Limits

(BQL) [9], limits the size of the transmission hardware queue

on a NIC by the number of bytes. In short, BQL is a self-

regulating algorithm that intends to estimate how many bytes

a network interface is capable of transmitting. Using BQL,

the amount of packets sent to the ring buffer (the NIC related

buffer – see Sec. IV-B) is reduced, shifting packet queuing

to the upper layers (e.g. to the qdisc, a OS related queue).

Then, buffering can be controlled using efficient queuing

disciplines available on qdisc, enabling a more sophisticated

queue management and allowing for latency reduction. The

main goal is to reduce latency caused by excessive queuing in

hardware without sacrificing throughput.

FQ-CoDel [10] and PIE (Proportional Integral controller

Enhanced) [20] are recent queue management schemes. FQ-

CoDel combines CoDel with stochastic fair queuing [16]. Ac-

cording to its authors, PIE can effectively control the average

queueing latency to a reference value, with low overhead.

Despite the excessive buffer capacity in network devices

and the consequent possibility of increased overall latencies,

most of the existing studies focus on the potential negative

impact of bufferbloat [7], [19]. These studies do not actually

present a systematic study evaluating the impact of buffer

size and its correlation with bufferbloat. In fact, as far as

we know, Allman [1] presented the first systematic study

of the bufferbloat problem, investigating the problem from a

macroscopic view of large-scale network measurements. The

conclusion is that, although the bufferbloat phenomenon may

happen, the magnitude of the problem in real network traffic

is rather modest.

In our previous work [4], we have presented a systematic

analysis of bufferbloat considering a microscopic view of

the buffer architecture of typical network devices. We have

varied the sizes of two main network queues on Unix-based

systems and we have notice the bufferbloat phenomenon only

in specific cases. For example, we only notice a considerable

impact on network latency when increasing the ring buffer

size, a NIC queue. In contrast, changes to qdisc, a network

related queue under OS control, do not significantly impact

on TCP performance. Despite the analysis in this previous

work, we have not conducted a systematic analysis of the most

common approaches to deal with bufferbloat phenomenon, as

contributed in this work.

Jarvinen and Kojo [13] have evaluated CoDel and PIE. Au-

thors have simulated (on NS2) and compared the performance

of both mechanisms against an aggressive RED variant called

HRED (Harsh RED). They indicate that neither CoDel nor PIE

really handle well load transients, whereas HRED outperforms

both in load transient handling. Moreover, CoDel auto-tuning

does not scale well with the load.

The coexistence of both AQM and LPCC based solutions

has been recently studied by Gong et al. [8]. Ideally, both

approaches should coexist transparently. Nevertheless, Gong et

al. present evidences that such a coexistence may cause a prob-

lem called “reprioritization”. Repriorization occurs because

XXXIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2015, 1-4 DE SETEMBRO DE 2015, JUIZ DE FORA, MG

AQM queues try to limit the excessive usage of bandwidth

to protect new and short duration flows. LPCCs, on the other

hand, attempt to use the available bandwidth in low priority

without interfering with other flows. As a consequence, LPCCs

under the influence of AQMs have their low priority ignored

and their flows become as aggressive as normal TCP flows,

reducing the benefit o LPCCs usage to avoid network overload.

IV. EXPERIMENTAL ENVIRONMENT

A. Testbed

We have configured a testbed in a way to allow a systematic

analysis of the buferbloat phenomenon and the interoperability

of the existing solutions. We are then able to control important

system parameters, such as the queue sizes at the network

devices and OS modules. In short, our experiments allow the

validation o end-to-end delay and throughput metrics.

Fig. 1 shows our testbed topology. Network consists of three

machines, where two are MacMinis1 acting as endpoints (A

and C), running Ubuntu 13.102 with Linux kernel 3.11. Each

MacMini has 1 GB of RAM and a Gigabit Ethernet interface.

The last machine (B) is a PC with Ubuntu 14.04 and Linux

kernel 3.13. This PC has 48 GB of RAM and 2 Gigabit

Ethernet interfaces. We have connected testbed hosts through

a VLAN containing all three nodes.

Fig. 1. Testbed configuration.

In our testbed, device B acts as a domestic router, the main

network device with excessively large queue issues [7]. The

link between hosts B and C is the network bottleneck. Every

communication between the two end hosts must pass through

this central router B. To perform the routing task, B runs the

Quagga3 routing software. Quagga is an open source software

that implements the most important routing algorithms.

Without loss of generality, our testbed represents a typical

home network scenario. Usually, between a domestic router

and an ISP router, or even between small office networks, only

one bottleneck link is observed. In other words, network end

points have plenty of resources. Nevertheless, these end points

are usually connected through one link with limited capacity.

B. Queue configuration

Devices queues and their configuration are the key elements

of the bufferbloat microscopic analysis we propose in this

paper. Queues are everywhere along a network path, including

end hosts, routers, and switches. Hence, it is important to have

in mind the general scenario that describes packet flows from

that application layer to the link layer.

In this work, we focus on Unix-based devices, since most

commercial network equipments are developed based on this

1www.apple.com
2www.ubuntu.com
3www.nongnu.org/quagga/

OS. Besides, it is well-known that there are many Unix-based

end hosts, servers and, even mobile devices.

Fig. 2 describes a Unix-based network protocol stack. We

are particularly interested in the system behavior while we vary

qdisc and ring buffer queue sizes.4 These queues store packets

in the network and link layers, respectively. Further, we focus

our analysis on the output from the ring buffer and qdisc

queues since their input queues commonly present sufficient

packet processing capacity.

ApplicationUser Space

TCP send Buffer
(tcp_wmem)

Kernel Space

TCP Process

IP Layer

qdisc

(txqueuelen)

Ring

Buffer

Device Driver

of the NIC

Packet

Transmission

Fig. 2. Unix-based queue architecture.5

More precisely, the output qdisc queue is located between

the network and link layers. In Unix systems, qdisc has

a standard 1,000 packets storage capacity. We are able to

configure this storage capacity using the ifconfig command,

through the txqueuelen parameter. By default, qdisc uses FIFO

as a queuing discipline. On the other hand, ring buffer is a

queue located between the link and physical layers. It receives

packets that arrive from the qdisc and delivers them to the

NIC physical layer. The lower and upper bounds on the ring

buffer size are defined by the NIC driver, which is rarely

configured. In other words, the possibility of changing the

ring buffer capacity using the command ethtool depends on

the availability of such functionality by the NIC driver. The

default ring buffer size in our testbed NICs is ≈ 512 packets.

V. EXPERIMENTAL RESULTS

A. Methodology

During our experiments, we have performed long-lived

TCP flow transmissions, as Jiang et al. [15]. We attempt to

induce the occurrence of the bufferbloat phenomenon in our

testbed (Figure 1) to analyze two main issues: (i) the impact

of ring buffer and qdisc sizes on bufferbloat (Sec. V-B); and

(ii) the impact of BQL and CoDel on bufferbloat as well as

their coexistence (Sec. V-C).

For each experiment, we monitor the round trip time (RTT)

with the ping tool for long TCP transfers from node A to

node C. As Allman [1], we assume that the RTT varies

proportionally to the variation of the queue occupation. Delay

4Typically, we refer qdisc and ring buffer queue sizes as the packet buffering
capacity. In a practical implementation, however, these queues actually store
descriptors that points to the real memory region that contains packets.

5Simplified version of picture 6-3 from [22].

XXXIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2015, 1-4 DE SETEMBRO DE 2015, JUIZ DE FORA, MG

fluctuations not caused by queuing are thus considered negli-

gible. We also monitor the throughput. For all metrics in this

scenario, the results are the mean values of 10 experiments.

We also show the standard error of the mean (SEM = σ/
√
n),

where σ is the standard deviation and n the number of samples.

To study existing solutions, such as CoDel and BQL, we

used the netperf-wrapper tool6 to perform experiments and

collect data. In a given set of experiments, we have used the

“real time response under load” netperf-wrapper option to

ensure that the bottleneck link is stressed. During our exper-

iments, netper-wrapper performs 50 downloads and a single

upload. We have considered in the testbed different scenarios

combining varied BQL limits, enabled/disabled CoDel, and the

use of distint bufferbloat solutions (e.g. FQ-CoDel or PIE):

• BQL and CoDel disabled: There is no bufferbloat coun-

termeasure;

• Auto-tuning BQL and CoDel enabled: Both solutions

coexist to fight bufferbloat;

• BQL disabled and CoDel enabled: This is the default

configuration for the considered Linux version;

• BQL with high limit and CoDel enabled: A badly con-

figured BQL with CoDel;

• BQL with high limit and CoDel disabled: A badly con-

figured BQL without CoDel;

• Auto-tuning BQL with CoDel, FQ-CoDel, and PIE;

• BQL with high limit with CoDel, FQ-CoDel, and PIE;

• BQL disabled with CoDel, FQ-CoDel, and PIE.

B. Impact of ring buffer and qdisc sizes

We first evaluate the impact of queue sizes on bufferbloat.

Due to space constraints, we only show results while varying

both ring buffer and qdisc sizes. The detailed impact of each

one of these queues, with independent size variation, has been

reported on our previous work [4].

According to Fig. 3, the variation of qdisc size has negligi-

ble impact on RTT. In contrast, the variation of the ring buffer

size leads to a high RTT and, consequently, to the occurrence

of the bufferbloat phenomenon. We clearly note that, for any

qdisc, a 4k ring buffer imposes up to 14s for the RTT, whereas

a small ring buffer results in a RTT in the order of 100ms.

We have also evaluated the impact of the ring buffer

and qdisc sizes on throughput. Fig. 4 shows that the mean

throughput tends to be slightly smaller with the increase of

the ring buffer size. For instance, considering the range of

sizes related to the qdisc buffer (0, 80, 28, 29, 210, 211, 212),

the difference between the throughput reached by the smallest

ring buffer size (80 packets) and the one reached by the largest

ring buffer size (4096 packets) is lower than 20kbps for any

qdisc size. Similarly to the RTT behavior, the variation of the

qdisc buffer size does not significantly impact the throughput.

Finally, we have monitored the TCP advertised window

during the file transfer. We have checked that, while the

transfer sequence goes on, the advertised window also grows

up, reaching a maximum value of 4MB. In short, the buffer

storage capacity of the receiving host was not a limiting factor

during transfers. In this case, we may conclude that RTT and

6github.com/tohojo/netperf-wrapper

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

0 80 256
512

1024
2048

4096

m
e
a
n
 R

T
T

 (
m

s
)

qdisc size (packets)

Ring Buffer
size (packets)

80

256

512

1024

2048

4096

Fig. 3. Impact of buffer sizes on RTT.

 0

 20

 40

 60

 80

 100

0 80 256
512

1024
2048

4096

T
h
ro

u
g
h
p
u
t
(k

b
p
s
)

qdisc size (packets)

Ring Buffer
size (packets)

80

256

512

1024

2048

4096

Fig. 4. Impact of buffer sizes on throughput.

throughput results have been only impacted by the bufferbloat

phenomenon.

C. BQL and CoDel Impact

In this section, we evaluate the use of BQL and CoDel to

avoid bufferbloat on susceptible routers.

Fig. 5 shows the CDF of the RTT delay on our testbed. We

present data we gather from 10 experiments and the SEM of

each percentile as error bars. We clearly note a high end-to-end

latency with both BQL and CoDel disabled (Fig. 5(a)). In this

case, less than 10% of all packets experienced a RTT lower

than 3s. Such RTTs are far larger than expected. In fact, with

both BQL and CoDel enabled (Fig. 5(b)), RTTs are no larger

than 100ms. With only CoDel enabled (Fig. 5(c)), maximum

RTT values are slightly larger than a system with both BQL

and CoDel enabled. RTT in Fig. 5(c) presents a higher variance

as compared with the scenario with both BQL and CoDel

enabled (Fig. 5(b)). Both curves present some overlapping,

suggesting they are actually statistically equivalent.

In short, the use of BQL and CoDel clearly mitigates

bufferbloat. Furthermore, results shown in Fig. 5 might suggest

that CoDel is the key mitigating actor. Nevertheless, under the

presence of a non-autotunning BQL, CoDel is incapable of

mitigating the bufferbloat effects. In fact, Fig. 5 shows that

a virtually unlimited BQL turns RTT as high as the scenario

where both, CoDel and BQL were disabled. In this case, it

would be better to fully disable BQL than enabling it with a

misconfiguration.

Finally, Fig. 6 shows the CDF of the throughput on our

testbed with different BQL configurations. Fig. 6(a) shows

auto-tunning BQL in use with FQ-CoDel, CoDel, and PIE.

As shown in Fig. 6(a), the concurrent use of BQL and FQ-

CoDel is slightly better than BQL and CoDel; e.g. the mean

throughput is about 7 kbps in there former case, which is

almost 40% better than the latter case. BQL with PIE presents

a lower throughput, with mean values around 2.5 kbps.

As we noticed when analyzing RTT, despite the good

performance of BQL on its standard configuration, if one

turns off its auto-tunning mechanism, it might become useless.

XXXIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2015, 1-4 DE SETEMBRO DE 2015, JUIZ DE FORA, MG

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

P
(D

e
la

y
 ≤

 d
)

Delay d (ms)

codel
fqcodel

pie

(a) Auto tuning BQL with AQMs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4000 8000 12000 16000 20000 24000

P
(D

e
la

y
 ≤

 d
)

Delay d (ms)

codel
fqcodel

pie
no aqm

(b) High limit BQL with AQMs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

P
(D

e
la

y
 ≤

 d
)

Delay d (ms)

codel
fqcodel

pie

(c) Zero limit BQL with AQMs.

Fig. 5. Impact of BQL and AQMs on a typical bufferbloat scenario.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

P
(T

h
ro

u
g
h
p
u
t

≤
 t
)

Throughput t (kbps)

codel
fqcodel

pie

(a) Auto tuning BQL with AQMs.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10

P
(T

h
ro

u
g
h
p
u
t

≤
 t
)

Throughput t (kbps)

codel
fqcodel

pie
no aqm

(b) High limit BQL with AQMs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

P
(T

h
ro

u
g
h
p
u
t

≤
 t
)

Throughput t (kbps)

codel
fqcodel

pie
no aqm

(c) Zero limit BQL with AQMs.

Fig. 6. Impact of BQL configuration on throughput.

For instance, according to Fig. 6(b), all mechanisms working

together with a virtually unlimited BQL present throughput

worst than a system without any AQM approach. Only CoDel

has presented a slightly better performance, yet, worse than a

system without BQL (Fig. 6(c)).

We remark that scenarios with BQL disabled present better

results, for all concomitant approaches, if compared with a

misconfigured BQL. In this case, FQ-CoDel outperforms other

approaches and, as shown in Fig. 5(c), latencies are low.

VI. CONCLUSIONS

In this paper, we present a systematic evaluation of buffer-

bloat, considering a typical network architecture. We conduct

our experiments in a controlled testbed, using the most com-

mon bufferbloat solutions proposed in the recent literature,

namely BQL, CoDel, FQ-CoDel, and PIE. Moreover, we also

evaluate the interoperability of these bufferbloat solutions and

the mutual impact they impose on each other.

Our experimental results show:

• Despite the recent buzz around the bufferbloat phe-

nomenon, our results indicate that bufferbloat may only

happen under very specific and unusual configurations of

the network buffers. We only notice bufferbloat when one

inadvertently changes the default ring buffer size.

• Recent versions of the Linux kernel avoid bufferbloat,

even in the specific cases in which it was observed. In

this case, any mechanism we have evaluate was efficient.

• They can work together without a noticeable interference.

We only notice a bad performance under a a mis-

configured BQL.

ACKNOWLEDGEMENTS

Authors thank Dave Täht (Bufferbloat.net) for suggestions con-
cerning experiments with the netperf-wrapper tool.

REFERENCES

[1] M. Allman. Comments on Bufferbloat. ACM SIGCOMM Computer
Communication Review, 43(1):31–37, 2013.

[2] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing Router Buffers.
In Proc. ACM SIGCOMM, 2004.

[3] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: New
techniques for congestion detection and avoidance. In Proc. ACM
SIGCOMM, 1994.

[4] T. B. Cardozo, A. P. C. da Silva, A. B. Vieira, and A. Ziviani. Bufferbloat
systematic analysis. In ITS 2014.

[5] C. Chirichella and D. Rossi. To the Moon and back: are Internet
bufferbloat delays really that large? In Proc. IEEE INFOCOM Workshop
on Traffic Measurement and Analysis, 2013.

[6] S. Floyd and V. Jacobson. Random early detection gateways for
congestion avoidance. IEEE/ACM Trans. on Net., 1(4):397–413, 1993.

[7] J. Gettys and K. Nichols. Bufferbloat: Dark Buffers in the Internet.
Communications of the ACM, 55(1):57–65, 2012.

[8] Y. Gong, D. Rossi, C. Testa, S. Valenti, and M. Täht. Fighting the
bufferbloat: on the coexistence of AQM and low priority congestion
control. Computer Networks, 2014.

[9] T. Herbert. Byte Queue Limits @lwn.net, nov 2011.
[10] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and E. Du-

mazet. Flowqueue-codel. IETF Internet Draft, 2014.
[11] O. Hohlfeld, E. Pujol, F. Ciucu, A. Feldmann, and P. Barford.

BufferBloat: How Relevant? A QoE Perspective on Buffer Sizing.
Technical report, Technische Universität Berlin, 2012.

[12] V. Jacobson. Congestion avoidance and control. ACM SIGCOMM
Computer Communication Review, 18(4):314–329, 1988.

[13] I. Jarvinen and M. Kojo. Evaluating codel, pie, and hred aqm techniques
with load transients. In IEEE LCN, 2014.

[14] H. Jiang, Z. Liu, Y. Wang, K. Lee, and I. Rhee. Understanding
Bufferbloat in Cellular Networks. In ACM SIGCOMM Workshop on
Cellular Networks: Operations, Challenges, and Future Design, 2012.

[15] H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling Bufferbloat in 3G/4G
Networks. In Proc. 2012 ACM IMC.

[16] N. Khademi, D. Ros, and M. Welzl. The new aqm kids on the block:
Much ado about nothing? http://urn.nb.no/URN:NBN:no-38868, 2013.

[17] D. Lee, K. Cho, G. Iannaccone, and S. Moon. Has Internet Delay gotten
Better or Worse? In Proc. 5th CFI, 2010.

[18] J. Nagle. On Packet Switches With Infinite Storage. RFC 970, 1985.
[19] K. Nichols and V. Jacobson. Controlling Queue Delay. Communications

of the ACM, 55(7):42–50, 2012.
[20] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian,

F. Baker, and B. VerSteeg. Pie: A lightweight control scheme to address
the bufferbloat problem. In HPSR, 2013 IEEE 14th, pages 148–155.

[21] D. Täht. Inside Codel and Fq Codel. Standford University Networking
Seminar, January 2013.

[22] K. Wehrle, F. Pahlke, H. Ritter, D. Muller, and M. Bechler. Linux
Networking Architecture. Prentice Hall, 2004.

