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Abstract— This paper proposes a method for the identification
of TPs sharing the same binder, based on the analysis of phantom
circuit measurements. Herein, phantoming is used to reveal if a
4-wire loop composed by two TPs are close enough in order to be
considered in the same binder. K-means and Gaussian Mixture
Model are evaluated on S11 parameter features obtained from
the phantom-mode measurement of two TPs. Also, an automatic
method to labelling the clusters and a method to estimate the
length which two TPs share the same binder are briefly presented.
Laboratory results confirm the accuracy of the methods.

Keywords— Binder Identification, DSL, Phantom-mode mea-
surement, K-means, Gaussian Mixture Model.

I. INTRODUCTION

Loop qualification is a relevant topic in Digital Subscriber
Line (DSL) research, since most of the actual telephone lines
are inherited from the Plain Old Telephone Service (POTS).
Knowledge about telephone loop plants is crucial for operators
to have a full exploitation of DSL service, managing the lines
and discovering which kind of service can be provided for a
specific customer.

Undoubtedly, multimedia services has increased over the
last years. Also, users are demanding more and more high
data transmission rates to use the bundle of services offered
by the cable companies. Hence, lots of technologies for
improving data transmission rates in copper systems has been
deployed such as G.fast [1] and XG.fast [2]. The usage of
high frequencies on DSL systems also offers new crosstalk
challenges. Then, studies about mitigation or removal of
crosstalk, e.g., on phantom circuits (more details on Sec. II),
are also well investigated [3], [4]. While Fiber-To-The-Home
(FTTH) is not completely deployed, regarding the optical fiber
wire connecting the central office to every customers premises,
there will still be an important role to play for DSL systems.

Most Loop Topology Identification (LTI) techniques in DSL
focus on a single loop and no information is given about which
other customer’s loops are near to it. This paper expands the
loop qualification principle from the single loop identification
approach to binder – structure that groups twisted pairs (TPs)
of telephone lines – and cable identification. Knowledge
about how the TPs are distributed along the cable contributes
for a better management of the telephone transmission lines
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network, such as prediction of crosstalk noise, since most of
the noise comes from TPs in the same binder.

To the best of our knowledge, no machine learning algo-
rithms have been studied for solving the binder identification
issue. Nevertheless, there are some important investigations in
the same field of study. In [6], a binder identification method
is presented, based on quiet line noise measurements. This
method takes considerable time to produce results (a few days
are required to identify closer TPs) and no information is given
about the binder length shared by the TPs. In [7], a study is
presented revealing the possibility of binder identification via
interpretation of line parameters such as the input impedance
and reflection of the phantom circuit composed by two TPs
which are intended to be identified. It is pointed out that the
phantom circuit composed by TPs in different binders presents
high impedance, which is an evidence for the identification.
Although the study was done, no direct application was
proposed. Also, the definition of binder is not clear. They
seem to be working more likely on cable identification than
binder identification. It is also pointed out that the length of
the phantom circuit can be found by using LTI technique as
if it were a common TP loop, but no further details are given,
as the condition in which this length can be discovered.

The main focus of this work is to define, via one-port
phantom measurements from the transmission device, when
two TPs are sharing the same binder and which length they
go together into the binder. In this paper, we present an
automatic method for binder identification using four features
extracted from scattering parameter measures in phantom-
mode between two TPs, SPM

11 , where PM stands for phantom-
mode. Two clustering strategies are used to reach the proposed
goal. K-means and Gaussian Mixture Model (GMM) are
machine learning algorithms used as unsupervised learning
method, characterizing the appropriate technique for binder
identification issue.

The paper is organized as follows: Sec. II presents the the-
oretical explanation of phantom-mode signal; Sec. III presents
the features for binder identification; Sec. IV presents the
methodology; Sec. V presents the analysis and results; Sec.
VI presents the concluding comments.

II. PHANTOM-MODE SIGNAL

Signal transmission using phantom-mode is a technique
primarily used for creating a new virtual communication
channel. The so called phantom circuit (Fig. 1) is obtained
using one TP (two wires) for transmitting common mode
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Fig. 1. phantom circuit configuration.

signals traveling in the positive direction and other TP (two
wires) for common mode signals traveling in the negative
direction. To achieve this, two center tapped baluns are used
in order to transmit and receive the phantom-mode signal.

The side circuits are considered as a single conductor for
the phantom circuit. For a proper functioning of the phantom
signal, there should be a proper balancing between the pairs
which are composing it, because a difference in the impedance
series or in the parallel admittance may generate common
mode currents that will cause a coupling between the phantom
circuit and the side circuits [8]. Some factors may limit the
transmission using the phantom-mode: a) Distance between
the pairs will decrease the capacitive and inductive coupling
of the phantom circuit; b) TPs in different binders will be more
unbalanced than TPs in the same binder, since the TPs in the
same binder are twisted together with different twist rate.

The medium between two TPs is inhomogeneous, composed
by air, metallic wires and the dielectric between the TPs, which
will strongly influence the characteristic impedance of the
phantom circuit. This inhomogeneity, including the distance
variation between the TPs (resulting in non-uniformity), makes
general physical modeling of phantom circuits a difficult task.
When both TPs of the phantom circuit are in the same binder,
this variation of the medium and the greater proximity between
them cause a lower mismatch between the measurement device
and the phantom circuit, allowing the signal to propagate along
the line, creating standing waves (Fig. 2).

Phantom circuits composed by TPs in different cables
have strong Near-End Reflection (NER) caused by distance
and unbalance between pairs. Thus, most part of the signal
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Fig. 2. Phantom measurements in the same binder and in different cables.
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Fig. 3. Two TPs sharing a first common binder and subsequently splitting
into different binders. The position where TPs going into different binders
behaves like an open-circuit.

is reflected before propagating along the line, reducing the
amplitude of the standing waves created in the frequency
domain (Fig. 2). For TPs inside a cable but in different binders,
the behavior of SPM

11 tends to be the midterm between same
binder and different cables cases.

Another relevant characteristic of the phantom circuit is that
when the distance between close TPs suddenly increases, i.e.,
when they go into different binders or cables as shown in
Fig. 3, the characteristic impedance of the phantom circuit
(Zpc) will also increase. In effect, it can be considered as
the impedance of an open-circuit in the phantom transmission
line. These different behaviors of SPM

11 will be exploited in
this paper for identifying if TPs are in the same binder and
estimating the length that TPs share inside the cable.

III. FEATURES FOR BINDER IDENTIFICATION

The presence of periodicities on the measured SPM
11 pa-

rameter was revealed as a relevant evidence for identifying
TPs in the same binder. The following notations demonimate
the features: f1) variance of the period of |SPM

11 |: σ2
p; f2)

variance of the magnitude of |SPM
11 |: σ2

M ; f3) number of
equivalent spectral lines applying the PSD equation in SPM

11 ,
F(SPM

11 (f)): nΦ; f4) the first point of the reflective time
domain response calculated from the inverse Fourier transform
of SPM

11 , T (SPM
11 (f)): A1.

The variance of the period (σ2
p) is estimated by calculating

the mean square error of the distance between peaks from the
magnitude of |SPM

11 |. The signal is divided into K segments
and for each segment is applied Eq. 1.

pk =
1

nk − 1

nk−1∑
i=1

‖tk,i+1 − tk,i‖2, (1)

where pk is the variance of the segment k, tk,i+1 and tk,i
are the position of two consecutive peaks within a segment k
and nk is the total number of peaks in k. Finally, the mean
value of all calculated variances is the σ2

p feature. As revealed
before, SPM

11 from TPs in the same binder has a well-defined
periodicity, then σ2

p tends to be smaller. As the frequency
increases, the periodic behavior becomes less clear, so it is
recommended not to use very high frequencies.

The variance of the magnitude (σ2
M ) is more related to

the influence caused by attenuation of the phantom circuit
on |SPM

11 |. Two TPs in different cables have a very high
characteristic impedance, causing strong NER. In contrast,
when the two TPs are situated in the same cable and even
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in the same binder, the characteristic impedance is small
and most energy propagates along the line. This effect is
intermediary for TPs in the same cable but in different binders.
The variance of all peaks on the

∣∣SPM
11

∣∣ is σ2
M feature.

The third feature (nΦ) applies the PSD, which reveals
the harmonic components (spectral lines) of a signal [9],
in SPM

11 as it were a time-domain signal. This operation
is indicated by expression F(SPM

11 (f)), which means the
number of equivalent spectral lines, named nΦ. If nΦ is small,
meaning that F(SPM

11 (f)) has few peaks, this indicates a well-
defined periodicity of the signal and the measurement probably
corresponds to TPs in the same binder.

The fourth feature (A1) attempts to capture the level of
mismatch between the input impedance of the phantom circuit
and the impedance of the measurement equipment, via the
NER level. Throughout experimental tests, a clear difference
among the NER levels of TPs in different cables, different
binders and same binder of phantom circuits has been verified.
The method uses an operator T that is the reflective time
domain response calculated from the inverse Fourier transform
of SPM

11 : T (SPM
11 (f)). The fourth feature is the first point of

T (SPM
11 (f)), called A1.

Since every phantom measurement with different pairs
will exhibit different features, it is possible to characterize
a phantom circuit measurement as a sample by a vector
f = (σ2

p, σ2
M , nΦ, A1) = (f1, f2, f3, f4), forming a space

ϕ→ <×<×Z×<. As will be seen, the pattern of a sample
will be identified based on its location on ϕ, with the estimate
accuracy depending on its position and choice of features.

IV. METHODOLOGY

The dataset was filled by 267 samples of SPM
11 measure-

ments performed using the setup shown in the Fig. 4 through
164 different TPs from a cable farm present in our DSL lab.
The cables used in this work are TEL 313 000 ELQXBE and
TEL 481 02 ELAFQBU/120. The former is an insulated cable
composed by 3 binders holding 10 pairs each and the latter is
a shielded cable (aluminum foil) with only one binder, holding
16 pairs. Each sample is constructed by the feature extraction
(σ2

p, σ2
M , nΦ, A1), formming the space ϕ→ <×<×Z ×<.

Thus, the dataset is a vector X ∈ ϕm, with m = 267 samples.
Each class (same binder, different binders and different cables)
has 89 SPM

11 measurements.

A. Stratified cross-validation

Cross-validation is called stratified when the original dataset
is randomly particioned into k equal size subsamples (also
called k-folds) and there is an effort to maintain the same
original proportion of each class in each fold. The stratified
cross-validation runs k times, where each time a single fold is
retained as the validation set and the remainig k− 1 folds are
used as the training set. Each fold is used exactly once as the
validation set. The goal of the cross-validation is to generalize
the results by statistical analysis that represents the insights of
how a model will behave with an unknown dataset, and also
reduces the so called overfitting. The output is the average
accuracy of correctly classified samples from each round.

Fig. 4. Setup for one port phantom measurements. The Network Analyser
is controlled by a computer and generates a common mode signal that is
converted in two differential mode signals, connected in parallel to both TPs.

Herein, the dataset X is stratified into 10-folds. There will
be a combination of feature extraction for each technique to
find the best one for the proposed binder identification issue.
Later, that best feature combination will be explored in the
same dataset X under specific experiments.

B. Machine learning algorithms

There are several methods for cluster analysis in the lit-
erature. In this paper, two consecrated clustering strategies
are evaluated for the binder identification issue: K-means and
Gaussian Mixture Model (GMM). The former is well known
as hard clustering, where each sample from the dataset is
classified into exactly one clusters. Samples from the same
cluster are as similar as possible and samples from different
clusters are as dissimilar as possible, more details can be found
in [10]. The latter is a soft clustering, where sample can be
classified into more than one cluster with some membership
levels associated to each cluster. GMM uses the expectation-
maximization (EM) algorithm to optimize its parameters, more
details in [11].

C. Labelling clusters

When working with unsupervised clustering strategies, an
important issue appears: the clusters must be labelled in order
to calculate the accuracy of the model. That task is not trivial
and it is usually done by a specialist who has the specific
knowledge to discern the clusters and to give labels to them.

In this paper, the embedded knowledge is responsible for
labelling the clusters found in the clustering techniques. The
clusters can have their labels automatically defined through the
fourth feature (A1) in a decreasing order of value: different
cables, different binders and same binder.

D. Sharing length identification through SPM
11

The LTI technique performed in this paper is used to
determine the length d that is shared by TPs in the binder (Fig.
3). The length is estimated through an automated technique to
find the peak related to the point that TPs split out in different
cables, which is equivalent to an open-end. First, the method
identifies all real peaks in the time-domain response. Second,
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two thresholds related to the horizontal distance between the
rising and falling edges of the time-domain pulse and the
vertical discrepancy between these edges are assumed. If both
conditions related to these thresholds are fulfilled for the first
peak found, the length shared by the TPs is calculated from
the location of this peak.

V. RESULTS

The results were generated by combining all four features
extracted from SPM

11 measurements. The goal was to identify
what is the best combination of features for the binder clas-
sification using clustering techniques. After the identification
of the best feature combination, there will be an exploration
of this information in the dataset.

K-means results are presented in the Table I (only combi-
nations with average accuracy above 65% are presented). The
results were sorted by the average accuracy rate (last column
in the table). The percentages mean the correctly classified
samples regarding the three classes. The best combination was
using feature [A1] only, reaching 100% of hit rate for different
cables (DC) and different binders (DB) classes, and 67.42%
of hit rate for same binder (SB) class. There is a perfect match
in differentiating different cables and different binders classes,
but the best combination of feature has difficulties with the
samples from same binder class.

Knowing the best combination of features, the goal now is
to explore that best combination in the dataset X in order to
discover how accurate is the best combination after applying
it in the whole dataset. Thus, three tests were performed:

1) Runs the clustering technique with stratified 10-fold
cross-validation. Computes the average accuracy among
all classifiers and the overall average.

2) Accomplished during the first step, retain the best clas-
sifier found in the cross-validation and highlights its
average accuracies in the validation set.

3) Runs the best classifier in all dataset in order to verify
its overall accuracy.

Table II resumes the accuracies found in the tests. As it
can be seen, K-means technique produces notable results with
overall accuracy around 90%, hitting 100% of hit rate in
all different binders and cables samples and 67.42% for the
same binder samples. That classifier had a clear difficulty in
identifying the same binder SPM

11 measurements, which was
expected due to the overlap of feature A1 values for samples of
same binder and different binders. Fig. 5 shows the clusters
formed by K-means where is possible to notice the nearest
samples between same binder and different binders classes.
However, despite of that percentage error of 10%, these lines

TABLE I
AVERAGE ACCURACY FOR EACH COMBINATION AND CLASS BY K-MEANS.

# Features SB (%) DB (%) DC (%) Avg. (%)

1 [4] 67.42 100 100 89.14
2 [2,4] 78.65 69.66 95.51 81.27
3 [2] 73.03 73.03 89.89 78.65
4 [2,3] 83.15 40.45 78.65 67.42

TABLE II
K-MEANS ACCURACY FOR EACH CLASS USING FEATURE A1 .

Type SB (%) DB (%) DC (%) Avg. (%)

Mean 66.29 100 97.75 88.01
Best 88.89 100 100 96.3

Best in all Dataset 67.42 100 100 89.14
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Fig. 5. K-means clusterization result for the best classifier in all dataset.

will still be classified in same cable (considering the leftmost
two classes as one) as result of the clear separation of the
feature A1 for lines in different cables and same cable.

The Table III presents all possible combinations of feature
for GMM technique. The winning combination with the best
average accuracy was the same of K-means technique, which
was feature A1 only, reaching 91.3% in the average accuracy.

Applying the same three tests as in K-means technique
regarding the winning combination, GMM produces the results
in the Table IV. The table confirms that classifying correctly a
same binder SPM

11 measurement, which means two TPs in the
same cable, is much difficult than classifying a different cables
SPM

11 measurement. When the best classifier is applied in the
whole dataset, GMM reaches 90.64% of overall accuracy.

GMM also produces the Posterior Probabilities (PPs) of
each sample regarding the three clusters found in the dataset.
Fig. 6 (top) depicts the PPs regarding the different cables

TABLE III
AVERAGE ACCURACY FOR EACH COMBINATION AND CLASS BY GMM.

# Features SB (%) DB (%) DC (%) Avg. (%)

1 [4] 76.25 98.75 98.9 91,3
2 [2] 77.53 61.8 92.13 77.15
3 [2,4] 65.17 53.93 95.51 71.54
4 [2,3] 83.15 38.2 78.65 66.67

TABLE IV
GMM ACCURACY FOR EACH CLASS USING FEATURE A1 .

Type SB (%) DB (%) DC (%) Avg. (%)

Mean 78.65 94.38 97.75 90.26
Best 100 100 100 100

Best in all Dataset 77.53 96.63 97.75 90.64
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Fig. 6. GMM results for the best classifier: (top-figure) the posterior
probabilities considering the component Different cables; (bottom-figure)
Presents the cluster membership score of each sample from the training set.

cluster in the training set which make possible to confirm the
clear separation between different cables class with high PPs
and the other ones with low PPs. Fig. 6 (bottom) shows the
membership score of each sample regarding the clusters. There
are just two line intersections among the three clusters with
few samples with compromised membership scores. The lower
the number of compromised membership scores, the better the
differentiation between classes.

A. Sharing length identification results

The SPM
11 dataset used to evaluate the sharing length

identification is formed by 78 samples of same binder and
65 samples of different binders, which is 71% composed by
lines of 500 m long and around 29% composed by lines of 150
m, 200 m and 250 m long. The following results compiles
the average error distribution with its standard deviation: a)
same binder obtained 6.4 ± 4.52; b) different binders obtained
12.94 ± 4.79. The general average error is less than 10%,
considering the whole range of tested TPs length (150-500 m).
Table V gives another view of the errors separated by tracks.
For almost 56% lines, the error was below 10%. Around 43%
with error between 10-20%. Besides the proximity, TPs in
the same binder are twisted all together but with different
twist-rate than other binders. Thus, the TPs of a binder
have larger coupling than TPs in different binders. Hence,
the reflective time domain response and one-port scattering
parameter in phantom-mode are very similar to measurement
in differential operation mode of individual TPs, which favors
the LTI techniques used with only 21.8% between 10-20%. On
the other hand, the lower coupling between TPs in different
binders decreases the quality of estimation with only 29.2%
of the lines in different binders with errors below 10%.

VI. CONCLUSION

This paper developed a general method for binder iden-
tification, i.e, a method that can work with any phantom
measurement. Analysing the results, we can afirm that cable
identification is an easier task relative to binder identification.
It probably happens because on cable identification, distance
and material (shield) between the conductors strongly affects

TABLE V
ERROR PER TRACK (%)

Track Error SB DB

[0-10] 55.94 78.21 29.23
[10-20] 43.36 21.79 69.23
[20-30] 0.7 0 1.54

[30-100] 0 0 0

the characteristic impedance, creating a strong signature on
the data with a great influence in the classification task.

GMM outperformed K-means in the automatic classification
of a SPM

11 measurement. Also, GMM is a soft clustering tech-
nique, which produces a membership score for each sample
to belong to a cluster. On the other hand, K-means is a hard
clustering technique, assigning always crisp values for each
sample belonging to a cluster. But it is still a simple, robust
and fast clustering technique.

The algorithm for sharing length identification maintained
the total error rate below 10%, showing that from different
binders SPM

11 measurements is more difficult to estimate the
length of the line than same binder SPM

11 measurements.
Physical modeling is being studied and developed to improve
the physical understanding of the problem and the methods
developed.
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