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Lattices from maximal quaternion orders over
totally real number fields

Cintya W.O. Benedito, Carina Alves and Sueli I.R. Costa

Abstract— In this paper we propose a framework to construct
space-time codes over lattices in dimensions 4n via ideals from
maximal orders of a quaternion algebra whose center is a totally
real number field. For n = 1 and n = 2 it was possible
to construct rotated versions of the densest lattices in their
dimensions, D4 and E8. These constructions provide explicit
forms for the generator matrix and other algebraic invariants
allowing to analyze meaningful performance parameters for
coding such as density, diversity and minimal product distance.

Keywords— Lattices, ideal lattices, quaternion algebras, maxi-
mal orders, space-time codes.

I. INTRODUCTION

A lattice Λ is a discrete additive subgroup of Rn generated
by integer combinations of n linearly independents vectors
v1, · · · , vn ∈ Rn.

Signal constellations having a lattice structure have been
studied as meaningful tools for transmitting data over both
Gaussian and single-antenna Rayleigh fading channels [1]. The
problem of finding good signal constellations for a Gaussian
channel is associated to the search for lattices with high
packing density [2].

The packing density of a lattice is the proportion of the
space Rn covered by the non-overlapping spheres of maximum
radius centered at the points of Λ. The densest possible lattice
packing have only be determined in dimensions 1 to 8 [2] and
24 [13].

If we consider the Rayleigh fading channel, a design crite-
rion can be provided by lattices with good minimum product
distance and full diversity [1], [4].

A lattice Λ ⊆ Rn has diversity k ≤ n if k is
the maximum number of non-vanishing coordinates of any
non-zero vector in Λ. If div(Λ) = n, the lattice Λ
is called full diversity and, in this case, we can define
the minimum product distance of Λ by dp,min(Λ) =
min {

∏n
i=1 |xi|;x = (x1, · · · , xn) ∈ Λ, x 6= 0} .

The algebraic number theory has been used as mathematical
tool that enables the design of good coding schemes for such
channels.

For example, it has been shown that algebraic lattices,
i.e., lattices constructed via the canonical embedding of an
algebraic number field, provide an efficient tool for designing
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lattice codes for transmission over the single-antenna Rayleigh
fading channel [4]. The reason is that the two main design
parameters, namely the modulation diversity and the minimum
product distance, can be related to properties of the underlying
number field: the maximal diversity is guaranteed when using
totally real number fields and the minimum product distance
can be related to the field discriminant [1].

In the search for lattices which can be the support for design
codes for both Gaussian and Rayleigh channels, algebraic
rotated lattices can be studied. In [1] was constructed rotated
versions of lattices D4, K12 and Λ16 via ideals of Q(ζn), for
n = 8, 2 1 and 40, respectively, and in [14] and [5] rotated
versions of lattices Ap−1, where p is an odd prime number,
D4, E6, E8, K12, Λ24 and Craig’s lattices A(k)

p is presented.
Quaternion structure has been used to propose STBC

(space-time block code) since the introduction of Alamouti
code for two transmit antennas [15]. From probability point
of view [6], designing a space-time block code requires the
maximization of two parameters: diversity gain and coding
gain. In the context of lattice, maximizing the coding gain
is equivalent to maximizing the density of the corresponding
lattice. Maximal orders have been proposed in the context of
space-time block codes in [7] and complex codes construc-
tions based on cyclic division algebras are proposed in [16].
More recently, the E8-lattice was constructed using quaternion
algebras over an imaginary quadratic field [3]. Codewords
are usually (in narrow band systems) built over the complex
field. However for ultra wideband communication, one needs
to design them over the real field [18]. Thus, having the
construction of rotated lattices as our goal, we are interested
in constructing dense lattices from maximal orders of the
division algebras over a totally real number field. To do this
construction we use the ideal lattice theory.

This paper is organized as follows. In Section II we collect
some result on ideal lattices, the Section III is devoted to recall
definitions and some properties of quaternion algebras and
quaternion orders. In Section IV a method to construct lattices
from maximal quaternion orders over totally real number fields
is presented. Finally, in Section V we describe constructions
of rotated versions of D4-lattice and E8-lattice.

II. IDEAL LATTICES

The theory of ideal lattices gives a general framework for
algebraic lattice constructions. We present this notion in the
case of totally real algebraic number fields.

Let K be a totally real algebraic number field of degree n
and let OK be its ring of integers. There are exactly n real
embeddings σi : K→ R, for i =, · · · , n.
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Given x ∈ K, the values NK/Q(x) =
∏n
i=1 σi(x) and

TrK/Q(x) =
∑n
i=1 σi(x) are called norm and trace of x in

K/Q, respectively. If {w1, · · · , wn} is a Z-basis of OK, the
discriminant of K is dK =

(
det(σj(wi))

n
i,j=1

)2
.

An ideal lattice is a lattice Λ = (I, qα), where I is an ideal
of OK and qα : I × I → Z is such that

qα(x, y) = TrK/Q(αxy),

where α ∈ K is totally positive (i.e., σi(α) > 0 ∀i). The rank
of an ideal lattice is the degree n of the number field K.

Let α ∈ K such that αi = σi(α) > 0 for all i = 1, · · · , n.
The embedding σα : K→ Rn where

σα(x) = (
√
α1σ1(x), · · · ,

√
αnσn(x))

is called a twisted embedding. When α = 1, the twisted
embedding is the canonical embedding.

It can be shown that if I ⊆ OK is a free Z-module of rank
n with Z-basis {w1, · · · , wn}, then the image Λ = σα(I) is
a lattice in Rn with basis {σα(w1), · · · , σα(wn)}. Moreover,
since K is totally real, the associated Gram matrix of Λ =
σα(I) is

G =
(
TrK/Q(αwiwj)

)n
i,j=1

.

The determinant of Λ is detΛ = detG and it is an invariant
under change of basis [2]. In the case of ideal lattices, the
determinant of Λ is related to dK.

Proposition 2.1: [9] If I ⊆ OK is a fractional ideal, then

det(σα(I)) = |dK|N(I)2NK/Q(α),

where N(I) = |OK/I| is the norm of the ideal I.

III. QUATERNION ALGEBRA AND QUATERNION ORDER

A quaternion algebra A = (α, β)K over a field K is a
central simple algebra of dimension 4 with basis {1, i, j, k}
satisfying i2 = α, j2 = β and k = ij = −ji, where α, β ∈
K/{0}.

Example 3.1: The standard example of quaternion algebra
over real number field is the Hamilton’s quaternions H =
(−1,−1)R.

If x ∈ A, let us say x = x1 + x2i + x3j + x4k, with
x1, x2, x3, x4 ∈ K. Then x = x1 − x2i− x3j − x4k is called
conjugated of x. For x ∈ A, the reduced trace and reduced
norm of x are defined as

Trd(x) = x+ x and Nrd(x) = xx,

respectively.
A quaternion algebra A = (α, β)K is a division algebra if

and only if ∀x ∈ A \ {0}, Nrd(x) 6= 0, and A is definite
if and only if the quadratic form Trd(xy) on A is positive
definite, for all x, y ∈ A.

Let R be a ring with field of fractions K, and let A =
(α, β)K be a quaternion algebra over K. An order O in A
is a subring of A containing 1, equivalently, it is a finitely
generated R-module such that A = KO. Hence, considering
R as a ring of K and the algebra A = (α, β)K, with α, β ∈ R,
then O = {α0 +α1i+α2j+α3k : α0, α1, α2, α3 ∈ R}, is an
order in A denoted by O = (α, β)R.

If I is an ideal in a quaternion algebra A and O is an
order of A, we say that I is a left ideal of O if OI ⊂ I
and I is a right ideal of O if IO ⊂ I. The reduced norm of
I, denoted by Nrd(I), is the R-fractional ideal generated by
{Nrd(x) : x ∈ I}.

Proposition 3.1: [12] Let O be an R-quaternion order in a
quaternion algebra A. If x ∈ O, then Trd(x), Nrd(x) ∈ R.

Let O be an R-order in a quaternion algebra A. The
reduced discriminant of O, D(O), is an ideal generated by
{{x1, x2, x3} : x1, x2, x3 ∈ O}, where

{x1, x2, x3} = Trd([x1, x2]x3)

= (x1x2 − x2x1)x3 − x3(x1x2 − x2x1).

An order M in a quaternion algebra A is maximal if M is
not properly contained in another order of A.

Lemma 3.1: [12] Every order is contained in a maximal
order.

It was shown in [8] that in order to maximize the number of
codewords in the available signal space, one should look for
cyclic division algebras having maximal orders with minimal
discriminants.

Proposition 3.2: [11] If M is a maximal order in A con-
taining another order O, then the discriminant satisfies

D(O) = D(M) · [M : O], D(M) = D(A).

Conversely, if D(O) = D(A), then O is a maximal order in
A.

IV. LATTICES FROM MAXIMAL QUATERNION ORDERS

In this section we propose an algebraic construction of
lattices of dimension 4n via maximal orders of quaternion
algebras, identifying their Gram and generator matrix. We can
define ideal lattices from maximal quaternion orders in the
same way that we define ideal lattices from number fields.

Let K be a totally real number field with degree n and A
be a definite quaternion algebra over K. If I is an ideal in
A and α is a totally positive element in K, then we have a
positive definite quadratic form Qα : I × I → Q given by
Qα(x, y) = TrK/Q(αTrd(xy)).

In this case, we let Λ = (I, α) denote the lattice associated
to the quadratic form Qα. Notice that, if the number field K
over Q is of degree n then the lattice has rank 4n, n ≥ 1.

LetM be a maximal quaternion order of A with basis B =
{y1, y2, y3, y4}. If [K : Q] = n and OK is the ring of integers
of K then {u1, · · · , un} is a Z-basis of OK. Considering I =
M ideal of A with basis B and α an totally real and totally
positive element of K then Λ = (I, α) is an ideal lattice of
rank 4n with basis

B′ = {yixj} = {w1, · · · , w4n}, i = 1, · · · , 4 and j = 1, · · · , n.

Moreover, since K is a totally real number field, the associated
Gram matrix of Λ = (I, α) is

G = TrK/Q(αTrd(wiwj)),

where wi, wj ∈ B′. In the same way, the determinant of Λ is
detΛ = detG.
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Proposition 4.1: [10] Let K be a totally real number field
and A be a definite quaternion algebra over K. If I ⊆ M is
an ideal of a maximal quaternion order M of A and α is a
totally positive element in K so that Λ = (I, α) is a lattice,
then

det(G) = d4
KN(α)4NK(Nrd(I))4(D(M)2), (1)

where G is the Gram matrix of Λ.
A necessary but not sufficient condition for Λ to be a rotated

version of a lattice Λ′ with scale c ∈ Z, (
√
cΛ′)n, is that

det(Λ) = cndet(Λ′), (2)

since the Gram matrix of (
√
cΛ′)n is cM , where M is the

generator matrix of Λ′.
Using the Equations (1) and (2) we can construct rotated

version of a known densest lattice with Gram matrix G. The
construction proposed here, differently from [10], allows also
an explicit form for a generator matrix. We remark that,
in order to analyze the density it may be enough to know
the lattice Gram matrix, but to analyze parameters such as
diversity and the minimum product distance is also necessary
to know a generator matrix of the lattice.

If we consider {u1, · · · , un} the Z-basis of OK then the
generator matrix to the lattice σ2α(OK) obtained by a twisted
embedding is

M1 =


√

2σ1(α)σ1(u1) · · ·
√

2σn(α)σn(u1)
...

. . .
...√

2σ1(α)σ1(un) · · ·
√

2σn(α)σn(un)


n×n

Hence, expanding M1 into a 4n × 4n matrix we have the
following matrix:

φ1 =


M1 0 0 0
0 M1 0 0
0 0 M1 0
0 0 0 M1

 . (3)

Now we consider the matrix whose rows are the coefficients
of B = {y1, y2, y3, y4} (basis of I =M), where ys = ys1 +
ys2i+ ys3j + ys4k, for s = 1, · · · , 4, i.e,

ϕ =


y1

y2

y3

y4

 =


y11 y12 y13 y14

y21 y22 y23 y24

y31 y32 y33 y34

y41 y42 y43 y44

 .

Applying the n embeddings of K in R, σ1, · · · , σn, in the
elements of ϕ we obtain the following 4n× 4n matrix:

φ2 = (σk(ϕi,j)) =

 σ1(ϕij) · · · 0
...

. . .
...

0 · · · σn(ϕij)

 ,

with i, j = 1, · · · , 4 and k = 1, · · · , n. Hence, a generator
matrix to ideal lattice Λ = (I, α) is given by

M = φ1φ2. (4)

Moreover, we can define through M a Z-basis
{σ2α(w1), · · · , σ2α(w4n)} of ideal lattice Λ = (I, α),
where

σ2α(wi) = σ2α(unys)

=
(√

2σ1(α)σ1(urys1), · · · ,
√

2σn(α)σn(urys1),√
2σ1(α)σ1(urys2), · · · ,

√
2σn(α)σn(urys2),√

2σ1(α)σ1(urys3), · · · ,
√

2σn(α)σn(urys3),√
2σ1(α)σ1(urys4), · · · ,

√
2σn(α)σn(urys4)

)
and σ2α is an embedding of A in R4n.

V. CONSTRUCTION OF LATTICES FROM MAXIMAL ORDERS
INTO QUATERNION ALGEBRAS

In this section, following the schedule provided in Section
IV, we find suitable ideals I ⊆ M and totally positive
elements α ∈ K such that the ideal lattices Λ = (I, α) are
rotated versions of the densest lattices in dimensions 4 and
8, that is, the root lattices D4 and E8, respectively. In these
constructions the algorithms were implemented in Magma and
Wolfram Mathematica software.

A. Construction of D4

Let H = (−1,−1)Q be the Hamilton quaternions over
Q and M ⊇ O = (−1,−1)Z a maximal quaternion order
characterized by the basis

B = B′ =

{
1, i, j,

1 + i+ j + k

2

}
.

In fact, by Propositions 3.1 and 3.2,M characterized by B is
a maximal quaternion order in A because

Trd(yi), Nrd(yi) ∈ Z and D(M) = 〈2〉 = D(A),

for all yi ∈ B, i = 1, · · · , 4. If we take the ideal Λ = I =M
and considering the canonical embedding (α = 1) we have
that Λ = (I, 1) is an ideal lattice with Z-basis B and full
diversity. Moreover, the Gram matrix of (I, 1) is given by

G = Trd(wiwj) =


2 0 0 1
0 2 0 1
0 0 2 1
1 1 1 2

 ,

where wi, wj ∈ B.
Applying the LLL algorithm, [17], we obtain the matrix

G′ =


2 0 1 −1
0 2 1 −1
1 1 2 −1
−1 −1 −1 2

 ,

that is a Gram matrix of the lattice D4. Therefore, Λ = (I, 1)
is an ideal lattice isomorphic to D4.
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B. Construction of E8

Let A = (−1,−1)K be a quaternion algebra over the
totally real number field K = Q(

√
2). Therefore, M ⊇

O = (−1,−1)OK is a maximal quaternion order in A, where
OK = Z[

√
2], characterized by the basis

B =

{
1,

1 + i√
2
,

1 + j√
2
,

1 + i+ j + k

2

}
. (5)

In fact, by Propositions 3.1 and 3.2,M characterized by B is
a maximal quaternion order in A because

Trd(yi), Nrd(yi) ∈ OK = Z[
√

2] and D(M) = 〈1〉 = D(A),

for all yi ∈ B, i = 1, · · · , 4. According with Proposition 4.1,
in order to fulfill the condition (2) for Λ′ = E8, we need to
find α ∈ K totally positive and I ⊆M a right ideal such that

c8 = 212N(α)4N(Nrd(I))4, (6)

since det(E8) = 1, D(M) = 1 and dK = 23. If we take the
ideal I =M and α = 2 +

√
2 totally positive element in K,

then Λ = (I, 2 +
√

2) is an ideal lattice with basis B
′

given
by

B′ =

{
1,
√
2,

1 + i√
2
, 1 + i,

1 + j√
2
,
1 + i+ j + k

2
,
1 + i+ j + k√

2

}
,

that satisfies (6), for c = 4. Moreover, the Gram matrix of
Λ = (I, 2 +

√
2) is given by

G = TrK/Q(αTrd(wiwj))

=



8 8 4 8 4 8 4 4
8 16 8 8 8 8 4 8
4 8 8 8 4 4 4 8
8 8 8 16 4 8 8 8
4 8 4 4 8 8 4 8
8 8 4 8 8 16 8 8
4 4 4 8 4 8 8 8
4 8 8 8 8 8 8 16


, (7)

where wi, wj ∈ B′ and det(Λ) = det(G) = 48. Applying the
LLL algorithm, [17], we obtain the matrix

G′ =



2 0 1 1 1 1 1 0
0 2 1 −1 1 −1 0 1
1 1 2 0 1 0 1 1
1 −1 0 2 0 1 1 −1
1 1 1 0 2 0 1 1
1 −1 0 1 0 2 1 −1
1 0 1 1 1 1 2 0
0 1 1 −1 1 −1 0 2


,

that is a Gram matrix of the lattice E8 (E8 is the only
unimodular lattice of dimension 8 and even). Therefore, Λ =
(I, 2 +

√
2) is an ideal lattice isomorphic to E8.

Now consider the matrix whose rows are the coefficients of
the basis given in (5):

ϕ =


1 0 0 0
1√
2

1√
2

0 0
1√
2

0 1√
2

0
1
2

1
2

1
2

1
2

 .

Since ϕ has zero entries, we have verified that the generator
matrix obtained as in (4) also have zero entries, and therefore
the ideal lattice obtained has not full diversity. The aim is
to find a rotated version of E8 with good minimum product
distance. So, as a first approach, we have found, using the
quaternion structure and a rotation matrix of ϕ, the following
matrix

Φ =


1

2
√

2
1
2

1√
2

1
2
√

2
1
4 (1−

√
2) 1

4 (1 +
√

2) 1
4

3
4

− 1
4

1
4 (1 +

√
2) 3

4
1
4 (1−

√
2)

1
4 (−1−

√
2) 1

4
1
4 (1 +

√
2) 1

4 + 1√
2

 , (8)

whose rows give us a new basis of the lattice Λ with
non-vanishing elements which improve the diversity of Λ.
Applying the embeddings σ1(a + b

√
2) = a + b

√
2 and

σ2(a + b
√

2) = a − b
√

2, a, b ∈ Q(
√

2), in the elements
of Φ we obtain the following 8× 8 matrix:

φ2 =

(
σ1(Φij) 0

0 σ2(Φij)

)
,

i, j = 1, · · · , 4. If we consider the basis {1,
√

2} of OK =
Z[
√

2] then

M1 =

 √
2σ1(2 +

√
2)σ1(1)

√
2σ2(2 +

√
2)σ2(1)√

2σ1(2 +
√
2)σ1(

√
2)

√
2σ2(2 +

√
2)σ2(

√
2)


=

( √
2(2 +

√
2)

√
2(2−

√
2)

2
√

2 +
√
2 −2

√
2−
√
2

)
.

Hence, expanding M1 into a 8×8 matrix we have the matrix
φ1 as in (3). Multiplying φ1 by φ2 we have a generator matrix
M as in (4) of the lattice Λ with non-vanishing elements.
Moreover, using M we obtain the Gram matrix (7) and
therefore, with the new basis (8), Λ is also isomorphic to E8.

Constructions of lattices in dimensions 4n, n > 2, are to
be considered using ideals in the maximal real subfield of
cyclotomic fields.

VI. CONCLUSIONS

In this paper, we construct ideal lattices from maximal
orders of quaternion algebras over totally real number fields
which can be used to design space-time block codes as
lattices of rank 4n. Special cases approached here are rotated
versions of lattices D4 and E8 which makes these quaternion
constructions as dense as possible in their dimensions. This
is a work in progress. The perspective is to explore this
construction for lattices in higher dimensions and besides
density, to analyze diversity and minimum product distance
using some advantages provided by the explicit form of the
generator matrix and algebraic structure.

We would like to thank the reviews for their very pertinent
remarks and suggestions.
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