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Ascending chain of monoid rings and encoding

Antonio Aparecido de Andrade and Tariq Shah

Abstract—1In this work, we present a construction technique
of cyclic, BCH, alternant, Goppa and Srivastava codes through
the monoid ring B[X; ,%pZo] instead of a polynomial ring.

Keywords— Monoid ring, cyclic code, BCH code, alternant
code, Goppa code, Srivastava code.

Resumo— Neste trabalho apresentamos uma técnica de
contrucdo de cédigos ciclicos, BCH, alternante, Goppa e de
Srivastava através do anel monoidal B[X Zo} ao invés de
um anel de polinémio.

Palavras-Chave— Anel monoidal, cédigo ciclico, codigo BCH,
codigo alternante, codigo de Goppa, cédigo de Srivastava.

I. INTRODUCTION

A. A. Andrade and R. Palazzo Jr. [1] discussed cyclic, BCH,
alternant, Goppa and Srivastava codes through the polynomial
ring B[X;Zo|, where B is any finite commutative ring with
identity and Zo = Z* U {0}. In this work, we introduce
construction techniques of these codes through the monoid
ring B[X; k;pZO] where p is any prime integer and k& > 1,
instead of a polynomial ring B[X; Z] as considered in [1].
In fact correspondmg to the family Z, C 1Z0 - C
" 1 Zy C ZO -+, where p is any prime integer
and k > 1, of ascending chains of cyclic monoids there
is a family of ascending chains B (X;Zo) C B|X; Zo]

- C BIX; 4= 1)pZO] C BIX Zo] . of commutative
monoid rings. For any pr1me p and £ > 1, in [2] we
consider the case B[X;Zo| C B[X; p%Zo], which is in fact
a generalized setting of [3] but in this study we take the
situation B[X;Zo] C B[X; ,%pZo]- Though we focus only
on encoding as [3] and [2], whereas the decoding procedure
like [10] is require a separate discussion. After, we present
a construction technique of cyclic codes through a monoid
ring B[X; kpZO] and we construct BCH, alternant, Goppa,
Srivastava codes utilizing the same lines as adopted in [1],
where almost all the results of [1] stand as a particular case
of findings of this work. That is, in this work we take B as a
finite commutative ring with unity and in the same spirit of [1],
we fixed a cyclic subgroup of group of units of the factor ring
B[X; kipZO]/((Xle)kp” —1). The factorization of X*P" — 1
over the group of units of B[X; k%pZO]/((X'%P)kp” —1) is
again the central issue as [1].

The procedure used in this work for constructing linear
codes through the monoid ring B[X; ¢ Zo] is simple like
polynomial’s set up and technique adopted here is quite
different to the embedding of linear polynomial codes in
a semigroup ring or in a group algebra, which has been
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considered by many authors. For example, in [4], the Sections
9.1 is dealing with error-correcting cyclic codes of length n
which are ideals in group ring F[G], whereas G is taken to
be a finite torsion group of order n.

This work is organized as follows. In Section 2, we present
some fundamentals on semigroups and semigroup rings nec-
essary for the construction of the linear codes. The Section 3
addresses the generalized construction of cyclic codes through
the monoid ring B[X ZO] where p is any prime integer
and k > 1. Sectlon 4, 1mproves the BCH and alternant codes
through B[X; £ Zo] instead of polynomial ring B[X] and
Section 5 estabhshes the constructions of Goppa and Srivas-
tava codes through B[X; ;%pZo}- The concluding remarks are
drawn in the last section.

II. BASIC FACTS

Let (B, +, -) be an associative (commutative) ring and (.S, *)
is a semigroup. The set SB of all finitely nonzero functions a
from S into B forms a ring with respect to binary operations
addition and multiplication defined as (a + b)(s) = a(s) +
b(s) and (ab)(s) = > a(t)b(u), whereas the symbol Z

txu=s
shows the sum, taken over all pairs (¢,u) of elements of S

with ¢ * u = s and it is understood that if s is not expressible
in the form ¢ * u for any ¢, u € S, then (ab)(s) = 0. The
set SB is known as semigroup ring of S over B. If S is a
monoid, then SB is called monoid ring. The semigroup ring
SB is represented as B[S] whenever S is a multiplicative
semigroup and its elements are written either as »_ a(s)s or

ses
as Z s;)s;. The SB has representation B[X;S] whenever
S is an additive semigroup. Since there is an isomorphism
between additive semigroup S and multiplicative semigroup
{X*®:s € S}, it follows that a nonzero element f of B[X; S]

is uniquely represented in the canonical form Z a(s;) X% =
=

Z a; X*, where a; # 0 and s; # s; for i # j [3].

The order and degree of an element of a semigroup ring are
not generally defined but if .S is a totally ordered semigroup,
the degree and the order of an element of B[X; S] is defined in

the following manner: if a = ) a; X is the canonical form

of the nonzero element a € BZ[)%, S], where 1 < s9 < -+ <
Sn, then s,, is the degree of a and written as deg(a) = s,, and
similarly the order of a is written as ord(a) = s;. Now, if R
is an integral domain, then for f,g € B[X;S], it follows that
deg(ab) =deg(a)+deg(b) and ord(ab) =ord(a)-+ord(b).

If S is Zg, the additive monoid of non negative integers
and B is an associative commutative ring, the semigroup ring
is simply the polynomial ring B[X]. It can be observed that
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B[X] = B[X;Zo] C B[X; z5Zo). Furthermore, as 1-Zy is
an ordered monoid, it follows that we can define the degree
of elements in B[X; - Zo].

III. ASCENDING CHAIN AND CYCLIC CODES

If the ideal I =< a > is a principal ideal of a unitary
commutative ring R, then in any factor ring R of R, the
corresponding ideal I =< @ >, where @ is the residue class of
a [6]. Hence, every factor ring of a principal ideal ring (PIR)
is a PIR as well.

I, 1x:2Z0]
( X"—l) H
a prime, is a PIR as [F,[X;Z] is an Euclidean domain [7,

Theorem 8.4]. Similarly ® = % is a PIR [1].
Let B be a commutative ring with identity. For any prime
integer p and k > 0, we get the following family of strict

ascending chains of commutative monoid rings

Consequently the ring where ¢ is a power of

BIX:Zo] € BIX; 7] C -+ C BIX: —TZ4] C
p kp

By the same argument of [1], it follows that the factor
Fq [Xv kpZD]
(x * Ykpn—1)
power of a prime and p is any fixed prime integer and k > 0, is
a PIR and -2

(X7 ykon_1)

of a PIR is again a PIR by [8, Proposition (38.4)]. By the

same spirit of [1], if B is a commutative ring with identity,
B[X; % L)

ring of Euclidean monoid domain , where ¢ is a

%5 440

is the PIR. The homomorphic image

then Ry, = T , where p is any prime integer and
X kp )kpn 1

k > 0, is a finite ring by [5, Theorem 7.2].

Definition 1: A linear code C of length kpn over B is a
B-submodule of the B-module of all kpn-tuples of Bkrn
and a linear code C' over B is cyclic, if whenever v =
(UQ,UL vl,m,--,v%) e C, every cyclic shift (1) =
Ukpkni,p—Q)EC,WithUierOrOSi<

P

(Ukpn 1 Uo,Ul Sttt

kpn— 1
kp ° .
Let f(X™) € B[X; ;7o) be a monic generalized poly-
) L] )
nomial of degree n, then X+ is the set of residue
F(xFr

classes of generallzed polynomials in B[X; ¢ ZO] modulo the
ideal (f(X*» 5 )) and a class can be represented as a(X ’w) =
a0+a1ka+ +a/kpn 1X
con51sts of all multlples “of a fixed generalized polynomial
BX; 2 Zo]
XF5
(generalized) polynomial of the ideal. Now, we shall prove
some results which show a method of obtaining the generator
(generalized) polynomial of a principal ideal. This method
shall provide a foundation in constructing a principal ideal in

. A principal ideal, which

g(X kv) by elements of , known as generator

M. Now, onward R, shall represent the factor ring
(F(XF2))

B[X%p ol B[X]

——*2—— whereas it = of [1].

((XF7)) x)

Theorem 1: A subset C' of Ry, where p is any prime
integer and £ > 0, is a cyclic code if and only if C' is an
ideal of Ryp.

Proof: Assume C is an ideal in R, and hence a B-module.
It is also closed under multiplication ?y any ring element, in
particular under multiplication by X »*. Hence C' is a cyclic
code. Conversely, let the subset C is a cyclic CO(lie. Then C
is closed under addition and multiplication by X fT But then
it is closed under multiplication Py powers of X % and linear
combinations of powers of X #%. This means, C is closed
under multiplication by an arbitrary generalized polynomial.
Hence C' is an ideal.

Lemma 1: Let I be an ideal in the ring Ry, where p is any

prime integer and k£ > 1. If the leading coefficient of some
generalized polynomial of lowest degree in [ is a unit in B,
then there exists a unique monic generalized polynomial of
minimal degree i in 1.
Proof: Let f(X kv) € [ with lowest degree r in I. If the
leading coefficient @, of f(X kﬁ) is a unit in B, it is always
possible to get a monic generalized polynomial f,(X Tlp) =
an(Xﬁ) with the same degree in . Now, if both g(Xﬁ)
and f(X ’%P) are monic generalized polynomials of minimal
degree 7 in I, then the generalized polynomial k(X kip) =
f(X’%P) - §(X’%P) is in I and has degree fewer than r.
Therefore, by the choice of f(X 77 ) follows that k(X 77 ) = 0,
and hence f(Xk%)) = g(X%p).

Theorem 2: Let J be an ideal in the ring Ry, where p is
any prime integer and k& > 0. If the leading coefficient of some
generalized polynomial g(X ’%P) of lowest degree in ideal J is
a unit in B, then [ is generated by g(X klp)

Proof: Let a(X ’w) be a generalized polynomial in J. By
Euchdean algorlthm there are umque generahzed polynomlals
(X kp) and 7(X kp) with a(X kr') = g(X kr') (X kp)
(ka), where r(X’w) = 0 or deg(r (ka)) <
deg(g(XTlp)) So clearly r(X’%) € J. Hence by the choice of
g(X ’vlp) it follows that 7(X 3 ») = 0 and therefore, a(X ’Tlp) =
(X klp) (X *» " ). Thus J is generated by §(X’%P).

Lemma 2: Let r(X ﬁ) be a generalized polynomial in

BIX; {5 Zo). If deg(r(X #7)) < deg f(X 7)) and r(X*7) #
0, then 7(X kv) 1s nonzero in RNy, )

Proof: If T(X kp) = 0, then there is ¢(X#®) # 0
in B[X;LZo] such that r(X7F) = f(X75)q(X77).
Since f(X’%) is regular and TQX’%P) # 0 it follows
that deg(r(X75)) = deg(f(X™)) + deg(q(X77)) >
deg(f(X I )), which is a contradiction. Hence 7(X kp) # 0.

Lemma 3: Let I be an ideal in the ring §Rkp, where p is any
prime integer, k > 0 and g(X* ) € B [X; ZO] with leadlng
coefficient unit in B such that deg(g(X *» b )) < deg(f(X kp?).
If g(X’%v) € I and has lowest degree in I, then g(X%»)
divides f(X7%7) in B[X; 1= Z).

Proof: According to Euclpdean algorithm for commutatlve
rings there are unique polynomials q(X kp) and r(X kp)
such that 0 = g(X kr) (X™) + T’(X ’w), where 7(X ’w) =
0 or deg(F(X#)) < deg(g(X™)). Thus F(X7%) =
—g(X kr) (X ’w), ie., F(XF» %) is in 1. So it follows by the
choice of E(Xk‘%) that 7(X#*) = 0. Also, by Euclidean
algorithm for commutative rings, there are unique generalized
polynomials ql(X’%P) and rl(Xk'*lp) such that f(X’%P) =
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. By Lemma 2
ri(X klp) = 0 and therefore g(X *») divides f(X kp)
Theorem 3: Let I be an 1deal in the ring ¥y,, where p is
any prime integer and k > 0. If g(X’%P) divides f(X’%p) and
g(Xﬁ) € 1, then y(X’TlP) has lowest degree in (g(Xﬁ))
Proof: Suppose that there is b(X klp) n (g (X klp)) such that

A <3|
w‘__‘
_

\ ~

deg(b(X77)) < deg(g(X77)). Since H(X®) € (g (X)),
therefore ng’T):j( X7 hl(X ») for some h(X’w)leR
Thus X 2) — g(XMO0R) € (OO e bXE) =
HXPPXE) = J(XD)(X) for some o) in
BUX; L Zol. This gives b(X7) = g(X%)h(X™) +

1

f(XkP) (ka) Smce g(X ) dVides f(XkP), SO g(XkP)
divides g(X *» " V(X kp)—l—f( ’%) (X kp) which implies that
g(X ﬁ) divides b(X kp? a contradiction. Hence g(X kp) has
lowest degree in (g(X #7)).

IV. BCH AND ALTERNANT CODES

In this section, we construct BCH and alternant codes
through a monoid ring instead of a polynomial ring. First
we noticed the fundamental properties of Galois extension
rings, which are used in the construction of these codes. Also,
we assume that (B, M) is a finite unitary local commutative
ring and residue field K = £ =~ GF(¢™), where ¢ is a
prime integer m a positive integer. The natural projection
™ BIX L) — K[X L 7] is defined by 7(a (X75)) =

(ka), ie. 7( s 0 " a; Xt ) = Zf:pg aika , where @; =
a;+M fori =0, -, kpn. Let f (X '%p) be a monic generalized
polynomial of degree tin B[X; ¢ ZO] such that 7 (f(X ’%P))
is irreducible in K[X ; k,pZO] Since [5, Theorem7.2] ac-

commodates B[X ZO] as B[ ], it follows that f(X ’%P)
is also 1rreduc1ble 1n B[X; ¢ Zo] by [9, Theorem XIIL.7].
The ring Ry, is a finite commutative local factor ring of a

monoid ring whose maximal ideal is My = —1— where
3y (f(XTF ))
M; = (M, f(X*)) and the residue field K; = 2tz ~

M2
2o K L)
BlXi ~ [X”“p ~ GF(¢*™), and K] is the
(M. f(XT7)) (r(F(X 7))
multiplicative group of IK; whose order is s = ¢*?t — 1.

Let U(Ryp) denotes the multiplicative group of units of
Rip. It follows that U(Ry,) is an abelian group, and therefore
it can be expressed as a direct product of cyclic groups. We are
interested in the maximal cyclic subgroup of U (R, ), hereafter
denoted by G, whose elements are the roots of X* — 1 for
some positive integer s such that ged(q, s) = 1. There is only
one maximal cyclic subgroup of U(Ry,) having order s [9,
Theorem XVIIIL.2].

Before going ahead it must be noticed that the length n of
cyclic codes (ideals in ¥,) under consideration is depends
upon ¢*P™ — 1. Though for R, the length n of cyclic codes
(ideals in R) is depends upon ¢™* —1, the case of [1, Definition
3.1]. Thus the integer kp have a crucial role in the length
of cyclic codes. This compeles to record that the degrees of

check and generator polynomials have the following status
deg(h(X 7)) > deg(h(X)) and deg(g(X ™)) > deg(g(X)),
where £ =10,1,2,---.

It would be worth mentioning that McCoy rank of parity
check matrix over the ring & is an integer r [9]. Now onward
it is clear that McCoy rank of parity check matrix over the
ring Ry, will be kpr.

Definition 2: Let n = (aq,---,ay) be a vector consisting
of distinct elements of Gy, and let w = (wy,wa, -, wy,)
be an arbitrary vector consisting of elements (not nec-
essarily distinct) of Gjps. Then the set of all vectors
w1 f(an),waf(az), -, wnf(an), where f(z) ranges over all
polynomials of degree at most ¢ — 1 and ¢ € N, with
coefficients from Ry, defines a shortened code C' of length
n < s over .

Rmark 1: Since f has at most ¢ — 1 zeros, the minimum
distance of this code is at least (n — ¢) + 1.

Definition 3: A shortened BCH code C(n,n) over B of
length n < s has parity check matrix

aq a2 Tt Qp
a% ag . a%
H= ) . ) (1
kpr kpr kpr
o Qg )

for some r > 1, where n = (a1, g, - - -, @y, ) is the locator vec-
tor, consisting of distinct elements of G. The code C(n,n),
with n = s, will be known as a BCH code.

Lemma 4: If « is an element of GG, of order s, then the
differences o't —a!2 are units in Ry, for 0 <1y #lp < s—1.
Proof: The element o't — a2 has the representation —a'? (1 —
alt=!2) where 1 is the identity of Ry,. The factor —a/2 in
the product is a unit. The second factor can be written as
1 — o’ for some integer j in the interval [1,s — 1]. Now if
the elements 1 — o/, for 1 < 7 < s—1, were not the units in
Rip, then 1 — ol € My, and consequently 7(a)? = 7(1) for
j < s, which a contradiction. Hence 1 — o’ € Ry, are units
for1 <j<s—1.

Theorem 4: The minimum Hamming distance of a BCH

code C(n,n) satisfies d > kpr + 1.
Proof: Let ¢ be a nonzero codeword in C'(n, n) with wy(c) <
kpr. Then cHT = 0. Deleting n — kpr columns of the matrix
H corresponding to zeros of the codeword, it follows that the
new matrix is Vandermonde. It follows, by Lemma 4, that the
determinant is a unit in $j,. Thus the only possibility for c
is the all zero codeword.

Definition 4: A shortened alternant code C'(n,n,w) of
length n < s is a code over B that has parity check matrix

wl w2 PR wn
w10 w2 Wn Qp
2 2 2
H = w109 Wa iy Wn O, (2)
kpr—1 k 1 _
wray?” waas’" wyakrr=1
1 . 1
w1 0
al DRI an

kpr—1 kpr—1 0 Wn,
o31 o
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where r is a positive integer, = (a1, 9, -+, ) is the
locator vector, consisting of distinct elements of G, and w =
(wi,ws, - +,wy) is an arbitrary vector consisting of elements
of G.

Theorem 5: The alternant code C(n,n,w) has minimum
Hamming distance d > kpr + 1.
Proof: Suppose ¢ is a nonzero codeword in C(n,n,w) such
that the weight wg(c) < kpr. Then cHT = ¢(LD)T = 0.
Setting b = ¢D7, it follows that wy (b) = wy(c) because D
is diagonal and invertible. Thus, bL7 = 0. We obtain the the
new matrix H;, the Vandermonde by deleting n—kpr columns
of the matrix H; that correspond to zeros of the codeword. It
follows, by Lemma 4, that the determinant is a unit in Ry,.
Thus the only possibility for c is all zero codeword.

V. GOPPA AND SRIVASTAVA CODES

In this section, we considered a subclass of alternant codes
and constructed by monoid ring instead of a polynomial ring,
one initiated Andrade and Palazzo in [1]. Goppa codes are
described in terms of a Goppa polynomial. In contrast to cyclic
codes, where it is difficult to estimate the minimum Hamming
distance d from the generator polynomial, Goppa codes have
the property that d > deg(h(X)) + 1.

Let B, Ry, and G as defined in previous section. Let O TE
be a generator element of the cycl1c group G4, where s =
gt 1. Let h(X 75 ) = ho+h L X+ +hip (X kp)"'”
be a polynomial with coefﬁc1ents in R, and hm # 0. Let

T ={ay,as, - +,an,} be a subset of distinct elements of G,
such that h(a;) are units from Ry, for i =1,2,---

Definition 5: A shortened Goppa code C(T, h) of length
n < s is a code over B which has parity-check matrix

h(on) ™! h(om) ™!
arh(ap)~t Appr (o)
H= . , 3
™ " h(an) ! ap?h(om)
where r is a positive integer, = (aq, 9, -+, qy) is the

locator vector, consisting of distinct elements of G, and w =
(h(ap)~t, -+, h(ay,)~1t) is a vector consisting of elements of

S

Definition 6: Let C(T, h) be a Goppa code.

1) If h(X ﬁ)) is irreducible, then C(T,h) is called an
irreducible Goppa code.

) If ¢ = (c1,692,77,¢p) € C(T,h) and ¢ =
(Cny+ -, co,c1) € C(T,h), then C(T,h) is called a
reversible Goppa code.

3) If h(X#) = (X* —a)*™=1 then C(T, h) is called a
cumulatwe Goppa code.

4) If h(X kp) has no multiple zeros, then C(T, h) is called
a separable Goppa code.

Rmark 2: Let C(T, h) be a Goppa code.

1) C(T,h) is a linear code.

2) For a code with Goppa polynomial h;(X Tlp) = (X 5 —

By)FPri, where B; € G, it follows that
(Oél _ /Bl)fkp'rl . (Oén _ Bl)*kp’rl

a1 (ar — 51)7@” an(auk, — 51)7@”
H, = .
alfp”il(m — By) ke aﬁp”il(an — By) ke

which is row equivalent to

( ﬁl) akPr ( ﬁl)—km‘z
(o — B)~kpri=1) (an — 5z) (kpri—1)
(o —‘ﬁl)_l (an —ﬂz)_l

As a consequence if h(X’?lp) = (X’Tlp — Bkt =
kp T (X ’w) then the Goppa code is the intersection

1
of the codes with hl(XRP) = (X% — @)k, for

l = 1,2,--- kpr, and hence it has the parity check
matrix
H,
Hy
H = .
Hkpr

3) A BCH code is a special case of a Goppa code.
For this, choose h(X#%) = (X®)k" and T =

{aq, 9, -, ay}, where o € G, for all i =
1,2, ---,n. By Equation (3), it follows that
—kpr —kpr —kpr
o a12 . a, P
o al—kpr a2* pr OZ,}L_ka
ar'agt oy

and it becomes the parity check matrix of a BCH code,
by Equation (1), when o ! is replaced by (;, for i =
1,2,---,n

Theorem 6: The Goppa code C(T', h) has minimum Ham-
ming distance d > kpr + 1.

Proof: Since C(T, h) is an alternant code C'(n,n,w) with n =
(a1, 00, -+, an) and w = (h(ag) ™1, -, h(ay)™h), it follows
by Theorem 5 that C (T, h) has minimum distance d > kpr+1.

This study is dealing with only encoding but one may
see [10] for the Goppa codes obtained through generalized
polynomials of B[X; ; ZO] whenever p = 2 and k = 1 for
its decoding principle.

Srivastava code is an interesting subclass of the alternant
code, which is similar to unpublished work [11], which is
proposed by J. N. Srivastava in 1967, a class of linear codes
which are not cyclic that are defined in form of the parity-
check matrices

where aq, 9, -, q, are distinct elements of GF(¢™) and
B1,B2,++, 0, are all the elements in GF(q™), except
0,a7 05", -+ ;" and I > 0. In the following, we define
the Srivastava code over a monoid ring instead of a polynomial

ring, which is in fact generalizes [1, Defination 4.1].



XXIX SIMPOSIO BRASILEIRO DE TELECOMUNICACOES - SBrT’11, 02-05 DE OUTUBRO DE 2011, CURITIBA, PR

Definition 7: A shortened Srivastava code of length n < s
is a code over B that has parity check matrix

l l 1

o1 [P} e Ay
a 7ﬁ1 Ot2751 anTﬁI
a3 %3 . 523
o= a1 —B2 a1 — B2 an—B2
- b)
g oy o,
al_ﬁkp'r Oll—ﬁka o‘n_ﬁkpr

where [,r are positive integers and {o; b1<i<n, {0i h1<i<kpr
are n + kpr distinct elements in Gy.

Theorem 7: A Srivastava code has minimum Hamming
distance d > kpr + 1.
Proof: A Srivastava code has minimum Hamming distance at
least kpr+1 if and only if every combination of kpr or fewer
columns of H is linearly independent over $j, or equivalently
the following submatrix

1 1 l

ol al a;
iq io ikpr
aj) =P Qiy—P gy —P1
B B kpr B
1
iy (’l2 tkpr
H, = i —B2 iy —f2 Qg —B2
1 l l
iy Vi I
| @iy —Brpr  @iyg—Lrpr Qi —Bhpr |
is nonsingular. However det(Hy) =
(tiy, @iy, o+, vy, ) det(Hp), where the matrix Hs s
given by
1 1 R S
ai; —P1 iy —P1 iy, P
1 1
Hy — aiy; —B2 iy —f32 iy, P2
1 1 1
ail_ﬁpT Xy _Bk}”. O"ikpr _ﬂkpr

As det(Hs) is a Cauchy determinant of order kpr, so it can
be concluded that
kpr )
2 /A

Pl Qikpr) 981,82, Brpr) _
where A = ;(ail)v(ziz)'““(aikm) 2 bty Q) =

Hij>ih(aij —a,) and v(X) = (X = B1)(X = B2) -+ (X —
Brpr). So by Lemma 4 it follows that det(H7) is a unit in
Rip and therefore d > kpr + 1.

Definition 8: Let r = (kpr)l and «q, -, Qp,
Bi,02,+,Brpr be the n + kpr distinct elements of
Gs. Let wy,---,w, be the elements of G5. A generalized
Srivastava code of length n < s is a code over B that has
parity check matrix given by

det(Hy) = (auy, - - ,Oéik,,,,v)l(_l) (

)

H,
H,

Hkp'r

where
w1 w2 Wn
a1 —0; az—pf; an—0;
Wi w2 A Wn
H] _ (al_ﬁj)2 (a2 Tﬁj)z (an_ﬁj)2
w1 w2 Wn
(a1=B;)"  (02—B;)" (an—8;)"

forj = 1727"'7ka°

Theorem 8: A Srivastava code has minimum Hamming
distance d > (kpr)l + 1.
Proof: Follows by Remark 2 and Theorem 7, because the
matrices of the Equations (3) and (4) are equivalents, whereas
h(XT7) = (X7 — ).

VI. CONCLUSION

In [1], cyclic codes, BCH, alternant, Goppa and Srivastava
codes over finite rings with length n = ¢! —1, where m, t are
positive integers and ¢ is any prime integer, are defined in such
way that r is the McCoy rank for corresponding parity check
matrices. Thought in this work we obtained cyclic, BCH,
alternant, Goppa and Srivastava codes over finite rings with
length n < ¢"»™* — 1, where p is a prime integer and k =
0,1,2,--- and kpr is the McCoy rank for corresponding parity
check matrices. Also, we used the monoid ring B[X; ﬁZO]
instead of a polynomial ring B[X; Z], where B is any finite
commutative ring with identity.
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