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Ascending chain of monoid rings and encoding
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Abstract— In this work, we present a construction technique
of cyclic, BCH, alternant, Goppa and Srivastava codes through
the monoid ring B[X; 1

kp
Z0] instead of a polynomial ring.
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Resumo— Neste trabalho apresentamos uma técnica de
contrução de códigos cı́clicos, BCH, alternante, Goppa e de
Srivastava através do anel monoidal B[X; 1

kp
Z0] ao invés de

um anel de polinômio.
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I. INTRODUCTION

A. A. Andrade and R. Palazzo Jr. [1] discussed cyclic, BCH,
alternant, Goppa and Srivastava codes through the polynomial
ring B[X;Z0], where B is any finite commutative ring with
identity and Z0 = Z+ ∪ {0}. In this work, we introduce
construction techniques of these codes through the monoid
ring B[X; 1

kpZ0], where p is any prime integer and k ≥ 1,
instead of a polynomial ring B[X;Z0] as considered in [1].
In fact corresponding to the family Z0 ⊂ 1

pZ0 ⊂ · · · ⊂
1

(k−1)pZ0 ⊂ 1
kpZ0 ⊂ · · ·, where p is any prime integer

and k ≥ 1, of ascending chains of cyclic monoids there
is a family of ascending chains B[X;Z0] ⊂ B[X; 1

pZ0] ⊂
· · · ⊂ B[X; 1

(k−1)pZ0] ⊂ B[X; 1
kpZ0] ⊂ · · · of commutative

monoid rings. For any prime p and k ≥ 1, in [2] we
consider the case B[X;Z0] ⊂ B[X; 1

pk Z0], which is in fact
a generalized setting of [3] but in this study we take the
situation B[X;Z0] ⊂ B[X; 1

kpZ0]. Though we focus only
on encoding as [3] and [2], whereas the decoding procedure
like [10] is require a separate discussion. After, we present
a construction technique of cyclic codes through a monoid
ring B[X; 1

kpZ0] and we construct BCH, alternant, Goppa,
Srivastava codes utilizing the same lines as adopted in [1],
where almost all the results of [1] stand as a particular case
of findings of this work. That is, in this work we take B as a
finite commutative ring with unity and in the same spirit of [1],
we fixed a cyclic subgroup of group of units of the factor ring
B[X; 1

kpZ0]/((X
1

kp )kpn − 1). The factorization of Xkpn − 1
over the group of units of B[X; 1

kpZ0]/((X
1

kp )kpn − 1) is
again the central issue as [1].

The procedure used in this work for constructing linear
codes through the monoid ring B[X; 1

kpZ0] is simple like
polynomial’s set up and technique adopted here is quite
different to the embedding of linear polynomial codes in
a semigroup ring or in a group algebra, which has been
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considered by many authors. For example, in [4], the Sections
9.1 is dealing with error-correcting cyclic codes of length n
which are ideals in group ring F [G], whereas G is taken to
be a finite torsion group of order n.

This work is organized as follows. In Section 2, we present
some fundamentals on semigroups and semigroup rings nec-
essary for the construction of the linear codes. The Section 3
addresses the generalized construction of cyclic codes through
the monoid ring B[X; 1

kpZ0], where p is any prime integer
and k ≥ 1. Section 4, improves the BCH and alternant codes
through B[X; 1

kpZ0] instead of polynomial ring B[X] and
Section 5 establishes the constructions of Goppa and Srivas-
tava codes through B[X; 1

kpZ0]. The concluding remarks are
drawn in the last section.

II. BASIC FACTS

Let (B,+, ·) be an associative (commutative) ring and (S, ∗)
is a semigroup. The set SB of all finitely nonzero functions a
from S into B forms a ring with respect to binary operations
addition and multiplication defined as (a + b)(s) = a(s) +
b(s) and (ab)(s) =

∑
t∗u=s

a(t)b(u), whereas the symbol
∑

t∗u=s
shows the sum, taken over all pairs (t, u) of elements of S
with t ∗ u = s and it is understood that if s is not expressible
in the form t ∗ u for any t, u ∈ S, then (ab)(s) = 0. The
set SB is known as semigroup ring of S over B. If S is a
monoid, then SB is called monoid ring. The semigroup ring
SB is represented as B[S] whenever S is a multiplicative
semigroup and its elements are written either as

∑
s∈S

a(s)s or

as
n∑

i=1

a(si)si. The SB has representation B[X;S] whenever

S is an additive semigroup. Since there is an isomorphism
between additive semigroup S and multiplicative semigroup
{Xs : s ∈ S}, it follows that a nonzero element f of B[X;S]

is uniquely represented in the canonical form
n∑

i=1

a(si)Xsi =
n∑

i=1

aiX
si , where ai 6= 0 and si 6= sj for i 6= j [5].

The order and degree of an element of a semigroup ring are
not generally defined but if S is a totally ordered semigroup,
the degree and the order of an element of B[X;S] is defined in

the following manner: if a =
n∑

i=1

aiX
si is the canonical form

of the nonzero element a ∈ B[X;S], where s1 < s2 < · · · <
sn, then sn is the degree of a and written as deg(a) = sn and
similarly the order of a is written as ord(a) = s1. Now, if R
is an integral domain, then for f, g ∈ B[X;S], it follows that
deg(ab) =deg(a)+deg(b) and ord(ab) =ord(a)+ord(b).

If S is Z0, the additive monoid of non negative integers
and B is an associative commutative ring, the semigroup ring
is simply the polynomial ring B[X]. It can be observed that
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B[X] = B[X;Z0] ⊂ B[X; 1
kpZ0]. Furthermore, as 1

kpZ0 is
an ordered monoid, it follows that we can define the degree
of elements in B[X; 1

kpZ0].

III. ASCENDING CHAIN AND CYCLIC CODES

If the ideal I =< a > is a principal ideal of a unitary
commutative ring R, then in any factor ring R of R, the
corresponding ideal I =< a >, where a is the residue class of
a [6]. Hence, every factor ring of a principal ideal ring (PIR)
is a PIR as well.

Consequently the ring Fq [X;Z0]
(Xn−1) , where q is a power of

a prime, is a PIR as Fq[X;Z0] is an Euclidean domain [7,

Theorem 8.4]. Similarly < = Zq [X;Z0]
(Xn−1) is a PIR [1].

Let B be a commutative ring with identity. For any prime
integer p and k ≥ 0, we get the following family of strict
ascending chains of commutative monoid rings

B[X;Z0] ⊂ B[X;
1
p
Z0] ⊂ · · · ⊂ B[X;

1
kp

Z0] ⊂ · · ·

By the same argument of [1], it follows that the factor

ring of Euclidean monoid domain
Fq [X; 1

kpZ0]

((X
1

kp )kpn−1)
, where q is a

power of a prime and p is any fixed prime integer and k ≥ 0, is

a PIR and
Zq [X; 1

kpZ0]

((X
1

kp )kpn−1)
is the PIR. The homomorphic image

of a PIR is again a PIR by [8, Proposition (38.4)]. By the
same spirit of [1], if B is a commutative ring with identity,

then <kp =
B[X; 1

kpZ0]

((X
1

kp )kpn−1)
, where p is any prime integer and

k ≥ 0, is a finite ring by [5, Theorem 7.2].
Definition 1: A linear code C of length kpn over B is a

B-submodule of the B-module of all kpn-tuples of Bkpn,
and a linear code C over B is cyclic, if whenever v =
(v0, v 1

kp
, v 2

kp
, v1, · · · , v kpn−1

kp
) ∈ C, every cyclic shift v(1) =

(v kpn−1
kp

, v0, v 1
kp

, · · · , v kpn−2
kp

) ∈ C, with vi ∈ B for 0 ≤ i ≤
kpn−1

kp .

Let f(X
1

kp ) ∈ B[X; 1
kpZ0] be a monic generalized poly-

nomial of degree n, then
B[X; 1

kpZ0]

(f(X
1

kp ))
is the set of residue

classes of generalized polynomials in B[X; 1
kpZ0] modulo the

ideal (f(X
1

kp )) and a class can be represented as a(X
1

kp ) =
a0 +a 1

kp
X

1
kp + · · ·+a kpn−1

kp
X

kpn−1
kp . A principal ideal, which

consists of all multiples of a fixed generalized polynomial

g(X
1

kp ) by elements of
B[X; 1

kpZ0]

(f(X
1

kp ))
, known as generator

(generalized) polynomial of the ideal. Now, we shall prove
some results which show a method of obtaining the generator
(generalized) polynomial of a principal ideal. This method
shall provide a foundation in constructing a principal ideal in
B[X; 1

kpZ0]

(f(X
1

kp ))
. Now, onward <kp shall represent the factor ring

B[X; 1
kpZ0]

(f(X
1

kp ))
, whereas < = B[X]

(f(X)) of [1].

Theorem 1: A subset C of <kp, where p is any prime
integer and k ≥ 0, is a cyclic code if and only if C is an
ideal of <kp.

Proof: Assume C is an ideal in <kp, and hence a B-module.
It is also closed under multiplication by any ring element, in
particular under multiplication by X

1
pk . Hence C is a cyclic

code. Conversely, let the subset C is a cyclic code. Then C

is closed under addition and multiplication by X
1

pk . But then
it is closed under multiplication by powers of X

1
kp and linear

combinations of powers of X
1

pk . This means, C is closed
under multiplication by an arbitrary generalized polynomial.
Hence C is an ideal.

Lemma 1: Let I be an ideal in the ring <kp, where p is any
prime integer and k ≥ 1. If the leading coefficient of some
generalized polynomial of lowest degree in I is a unit in B,
then there exists a unique monic generalized polynomial of
minimal degree in I .
Proof: Let f(X

1
kp ) ∈ I with lowest degree r in I . If the

leading coefficient ar of f(X
1

kp ) is a unit in B, it is always
possible to get a monic generalized polynomial f1(X

1
kp ) =

arf(X
1

kp ) with the same degree in I . Now, if both g(X
1

kp )
and f(X

1
kp ) are monic generalized polynomials of minimal

degree r in I , then the generalized polynomial k(X
1

kp ) =
f(X

1
kp ) − g(X

1
kp ) is in I and has degree fewer than r.

Therefore, by the choice of f(X
1

kp ) follows that k(X
1

kp ) = 0,
and hence f(X

1
kp ) = g(X

1
kp ).

Theorem 2: Let J be an ideal in the ring <kp, where p is
any prime integer and k ≥ 0. If the leading coefficient of some
generalized polynomial g(X

1
kp ) of lowest degree in ideal J is

a unit in B, then I is generated by g(X
1

kp ).
Proof: Let a(X

1
kp ) be a generalized polynomial in J . By

Euclidean algorithm there are unique generalized polynomials
q(X

1
kp ) and r(X

1
kp ) with a(X

1
kp ) = q(X

1
kp )g(X

1
kp ) +

r(X
1

kp ), where r(X
1

kp ) = 0 or deg(r(X
1

kp )) <

deg(g(X
1

kp )). So clearly r(X
1

kp ) ∈ J . Hence by the choice of
g(X

1
kp ), it follows that r(X

1
kp ) = 0 and therefore, a(X

1
kp ) =

q(X
1

kp )g(X
1

kp ). Thus J is generated by g(X
1

kp ).
Lemma 2: Let r(X

1
kp ) be a generalized polynomial in

B[X; 1
kpZ0]. If deg(r(X

1
kp )) < deg f(X

1
kp )) and r(X

1
kp ) 6=

0, then r(X
1

kp ) is nonzero in <kp.
Proof: If r(X

1
kp ) = 0, then there is q(X

1
kp ) 6= 0

in B[X; 1
kpZ0] such that r(X

1
kp ) = f(X

1
kp )q(X

1
kp ).

Since f(X
1

kp ) is regular and r(X
1

kp ) 6= 0 it follows
that deg(r(X

1
kp )) = deg(f(X

1
kp )) + deg(q(X

1
kp )) ≥

deg(f(X
1

kp )), which is a contradiction. Hence r(X
1

kp ) 6= 0.
Lemma 3: Let I be an ideal in the ring <kp, where p is any

prime integer, k ≥ 0 and g(X
1

kp ) ∈ B[X; 1
kpZ0] with leading

coefficient unit in B such that deg(g(X
1

kp )) < deg(f(X
1

kp )).
If g(X

1
kp ) ∈ I and has lowest degree in I , then g(X

1
kp )

divides f(X
1

kp ) in B[X; 1
kpZ0].

Proof: According to Euclidean algorithm for commutative
rings there are unique polynomials q(X

1
kp ) and r(X

1
kp )

such that 0 = g(X
1

kp )q(X
1

kp ) + r(X
1

kp ), where r(X
1

kp ) =
0 or deg(r(X

1
kp )) < deg(g(X

1
kp )). Thus r(X

1
kp ) =

−g(X
1

kp )q(X
1

kp ), i.e., r(X
1

kp ) is in I . So it follows by the
choice of g(X

1
kp ) that r(X

1
kp ) = 0. Also, by Euclidean

algorithm for commutative rings, there are unique generalized
polynomials q1(X

1
kp ) and r1(X

1
kp ) such that f(X

1
kp ) =
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g(X
1

kp )q1(X
1

kp ) + r1(X
1

kp ), where r1(X
1

kp ) = 0 or
deg(r1(X

1
kp )) < deg(g(X

1
kp )). So 0 = g(X

1
kp )q1(X

1
kp ) +

r1(X
1

kp ) = g(X
1

kp )q(X
1

kp ) + r(X
1

kp ). Thus q1(X
1

kp ) =
q(X

1
kp ) and r1(X

1
kp ) = r(X

1
kp ) = 0. By Lemma 2

r1(X
1

kp ) = 0 and therefore g(X
1

kp ) divides f(X
1

kp ).
Theorem 3: Let I be an ideal in the ring <kp, where p is

any prime integer and k ≥ 0. If g(X
1

kp ) divides f(X
1

kp ) and
g(X

1
kp ) ∈ I , then g(X

1
kp ) has lowest degree in (g(X

1
kp )).

Proof: Suppose that there is b(X
1

kp ) in (g(X
1

kp )) such that
deg(b(X

1
kp )) < deg(g(X

1
kp )). Since b(X

1
kp ) ∈ (g(X

1
kp )),

therefore b(X
1

kp ) = g(X
1

kp )h(X
1

kp ) for some h(X
1

kp ) ∈ R.
Thus b(X

1
kp )− g(X

1
kp )h(X

1
kp ) ∈ (f(X

1
kp )), i.e., b(X

1
kp )−

g(X
1

kp )h(X
1

kp ) = f(X
1

kp )a(X
1

kp ) for some a(X
1

kp ) in
B[X; 1

kpZ0]. This gives b(X
1

kp ) = g(X
1

kp )h(X
1

kp ) +
f(X

1
kp )a(X

1
kp ). Since g(X

1
kp ) divides f(X

1
kp ), so g(X

1
kp )

divides g(X
1

kp )h(X
1

kp )+f(X
1

kp )a(X
1

kp ), which implies that
g(X

1
kp ) divides b(X

1
kp ), a contradiction. Hence g(X

1
kp ) has

lowest degree in (g(X
1

kp )).

IV. BCH AND ALTERNANT CODES

In this section, we construct BCH and alternant codes
through a monoid ring instead of a polynomial ring. First
we noticed the fundamental properties of Galois extension
rings, which are used in the construction of these codes. Also,
we assume that (B,M) is a finite unitary local commutative
ring and residue field K = B

M
∼= GF (qm), where q is a

prime integer, m a positive integer. The natural projection
π : B[X; 1

kpZ0] → K[X; 1
kpZ0] is defined by π(a(X

1
kp )) =

a(X
1

kp ), i.e. π(
∑kpn

i=0 aiX
1

kp i) =
∑kpn

i=0 aiX
1

kp i, where ai =
ai+M for i = 0, · · · , kpn. Let f(X

1
kp ) be a monic generalized

polynomial of degree t in B[X; 1
kpZ0] such that π(f(X

1
kp ))

is irreducible in K[X; 1
kpZ0]. Since [5, Theorem7.2] ac-

commodates B[X; 1
kpZ0] as B[X], it follows that f(X

1
kp )

is also irreducible in B[X; 1
kpZ0], by [9, Theorem XIII.7].

The ring <kp is a finite commutative local factor ring of a
monoid ring whose maximal ideal is M2 = M1

(f(X
1

kp ))
, where

M1 = (M,f(X
1

kp )) and the residue field K1 = <kp

M2
'

B[X; 1
kpZ0]

(M,f(X
1

kp ))
' K[X; 1

kpZ0]

(π(f(X
1

kp )))
' GF (qkpmt), and K∗

1 is the

multiplicative group of K1 whose order is s = qkpmt − 1.
Let U(<kp) denotes the multiplicative group of units of

<kp. It follows that U(<kp) is an abelian group, and therefore
it can be expressed as a direct product of cyclic groups. We are
interested in the maximal cyclic subgroup of U(<kp), hereafter
denoted by Gs, whose elements are the roots of Xs − 1 for
some positive integer s such that gcd(q, s) = 1. There is only
one maximal cyclic subgroup of U(<kp) having order s [9,
Theorem XVIII.2].

Before going ahead it must be noticed that the length n of
cyclic codes (ideals in <kp) under consideration is depends
upon qkpmt − 1. Though for <, the length n of cyclic codes
(ideals in <) is depends upon qmt−1, the case of [1, Definition
3.1]. Thus the integer kp have a crucial role in the length
of cyclic codes. This compeles to record that the degrees of

check and generator polynomials have the following status
deg(h(X

1
kp )) ≥ deg(h(X)) and deg(g(X

1
kp )) ≥ deg(g(X)),

where k = 0, 1, 2, · · ·.
It would be worth mentioning that McCoy rank of parity

check matrix over the ring < is an integer r [9]. Now onward
it is clear that McCoy rank of parity check matrix over the
ring <kp will be kpr.

Definition 2: Let η = (α1, · · · , αn) be a vector consisting
of distinct elements of Gs, and let ω = (ω1, ω2, · · · , ωn)
be an arbitrary vector consisting of elements (not nec-
essarily distinct) of Gkps. Then the set of all vectors
ω1f(α1), ω2f(α2), · · · , ωnf(αn), where f(z) ranges over all
polynomials of degree at most c − 1 and c ∈ N, with
coefficients from <kp, defines a shortened code C of length
n ≤ s over <kp.

Rmark 1: Since f has at most c − 1 zeros, the minimum
distance of this code is at least (n− c) + 1.

Definition 3: A shortened BCH code C(n, η) over B of
length n ≤ s has parity check matrix

H =


α1 α2 · · · αn

α2
1 α2

2 · · · α2
n

...
...

. . .
...

αkpr
1 αkpr

2 · · · αkpr
n

 (1)

for some r ≥ 1, where η = (α1, α2, · · · , αn) is the locator vec-
tor, consisting of distinct elements of Gs. The code C(n, η),
with n = s, will be known as a BCH code.

Lemma 4: If α is an element of Gs of order s, then the
differences αl1−αl2 are units in <kp for 0 ≤ l1 6= l2 ≤ s−1.
Proof: The element αl1−αl2 has the representation −αl2(1−
αl1−l2), where 1 is the identity of <kp. The factor −αl2 in
the product is a unit. The second factor can be written as
1 − αj for some integer j in the interval [1, s − 1]. Now if
the elements 1− αj , for 1 ≤ j ≤ s− 1, were not the units in
<kp, then 1 − αj ∈ M2, and consequently π(α)j = π(1) for
j < s, which a contradiction. Hence 1 − αj ∈ <kp are units
for 1 ≤ j ≤ s− 1.

Theorem 4: The minimum Hamming distance of a BCH
code C(n, η) satisfies d ≥ kpr + 1.
Proof: Let c be a nonzero codeword in C(n, η) with wH(c) ≤
kpr. Then cHT = 0. Deleting n− kpr columns of the matrix
H corresponding to zeros of the codeword, it follows that the
new matrix is Vandermonde. It follows, by Lemma 4, that the
determinant is a unit in <kp. Thus the only possibility for c
is the all zero codeword.

Definition 4: A shortened alternant code C(n, η, ω) of
length n ≤ s is a code over B that has parity check matrix

H =


ω1 ω2 · · · ωn

ω1α1 ω2α2 · · · ωnαn

ω1α
2
1 ω2α

2
2 · · · ωnα2

n
...

...
. . .

...
ω1α

kpr−1
1 ω2α

kpr−1
2 · · · ωnαkpr−1

n

 (2)

=


1 · · · 1
α1 · · · αn

...
. . .

...
αkpr−1

1 · · · αkpr−1
n


 w1 · · · 0

...
. . .

...
0 · · · wn

 = LD,
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where r is a positive integer, η = (α1, α2, · · · , αn) is the
locator vector, consisting of distinct elements of Gs, and ω =
(ω1, ω2, · · · , ωn) is an arbitrary vector consisting of elements
of Gs.

Theorem 5: The alternant code C(n, η, ω) has minimum
Hamming distance d ≥ kpr + 1.
Proof: Suppose c is a nonzero codeword in C(n, η, ω) such
that the weight wH(c) ≤ kpr. Then cHT = c(LD)T = 0.
Setting b = cDT , it follows that wH(b) = wH(c) because D
is diagonal and invertible. Thus, bLT = 0. We obtain the the
new matrix H1, the Vandermonde by deleting n−kpr columns
of the matrix H1 that correspond to zeros of the codeword. It
follows, by Lemma 4, that the determinant is a unit in <kp.
Thus the only possibility for c is all zero codeword.

V. GOPPA AND SRIVASTAVA CODES

In this section, we considered a subclass of alternant codes
and constructed by monoid ring instead of a polynomial ring,
one initiated Andrade and Palazzo in [1]. Goppa codes are
described in terms of a Goppa polynomial. In contrast to cyclic
codes, where it is difficult to estimate the minimum Hamming
distance d from the generator polynomial, Goppa codes have
the property that d ≥ deg(h(X)) + 1.

Let B, <kp and Gs as defined in previous section. Let α
1

kpk

be a generator element of the cyclic group Gs, where s =
qkpmt−1. Let h(X

1
kp ) = h0+h 1

kp
X

1
kp +· · ·+h kpr

kp
(X

1
kp )kpr

be a polynomial with coefficients in <kp and h kpr
kp

6= 0. Let
T = {α1, α2, · · · , αn} be a subset of distinct elements of Gs

such that h(αi) are units from <kp, for i = 1, 2, · · · , n.
Definition 5: A shortened Goppa code C(T, h) of length

n ≤ s is a code over B which has parity-check matrix

H =


h(α1)−1 · · · h(αn)−1

α1h(α1)−1 · · · αkpnh(αn)
...

. . .
...

αkpr−1
1 h(α1)−1 · · · αkpr−1

n h(αn)

 , (3)

where r is a positive integer, η = (α1, α2, · · · , αn) is the
locator vector, consisting of distinct elements of Gs, and ω =
(h(α1)−1, · · · , h(αn)−1) is a vector consisting of elements of
Gs.

Definition 6: Let C(T, h) be a Goppa code.

1) If h(X
1

kp ) is irreducible, then C(T, h) is called an
irreducible Goppa code.

2) If c = (c1, c2, · · · , cn) ∈ C(T, h) and c =
(cn, · · · , c2, c1) ∈ C(T, h), then C(T, h) is called a
reversible Goppa code.

3) If h(X
1

kp ) = (X
1

kp −α)kpr−1, then C(T, h) is called a
cumulative Goppa code.

4) If h(X
1

kp ) has no multiple zeros, then C(T, h) is called
a separable Goppa code.

Rmark 2: Let C(T, h) be a Goppa code.

1) C(T, h) is a linear code.
2) For a code with Goppa polynomial hl(X

1
kp ) = (X

1
kp −

βl)kprl , where βl ∈ Gs, it follows that

Hl =


(α1 − βl)

−kprl . (αn − βl)
−kprl

α1(α1 − βl)
−kprl . αn(αpkn − βl)

−kprl

... .
...

α
kprl−1
1 (α1 − βl)

−kprl . α
kprl−1
n (αn − βl)

−kprl


which is row equivalent to

(α1 − βl)−akprl · · · (αn − βl)−kprl

(α1 − βl)−(kprl−1) · · · (αn − βl)−(kprl−1)

...
. . .

...
(α1 − βl)−1 · · · (αn − βl)−1

 .

As a consequence if h(X
1

kp ) = (X
1

kp − βl)kprl =∏kpr
l=1 hl(X

1
kp ), then the Goppa code is the intersection

of the codes with hl(X
1

kp ) = (X
1

kp − βl)kprl , for
l = 1, 2, · · · , kpr, and hence it has the parity check
matrix

H =


H1

H2

...
Hkpr

 .

3) A BCH code is a special case of a Goppa code.
For this, choose h(X

1
kp ) = (X

1
kp )kpr and T =

{α1, α2, · · · , αn}, where αi ∈ Gs, for all i =
1, 2, · · · , n. By Equation (3), it follows that

H =


α−kpr

1 α−kpr
2 · · · α−kpr

n

α1−kpr α1−kpr
2 · · · α1−kpr

n
...

...
. . .

...
α−1

1 α−1
2 · · · α−1

n


and it becomes the parity check matrix of a BCH code,
by Equation (1), when α−1

i is replaced by βi, for i =
1, 2, · · · , n.

Theorem 6: The Goppa code C(T, h) has minimum Ham-
ming distance d ≥ kpr + 1.
Proof: Since C(T, h) is an alternant code C(n, η, ω) with η =
(α1, α2, · · · , αn) and ω = (h(α1)−1, · · · , h(αn)−1), it follows
by Theorem 5 that C(T, h) has minimum distance d ≥ kpr+1.

This study is dealing with only encoding but one may
see [10] for the Goppa codes obtained through generalized
polynomials of B[X; 1

kpZ0] whenever p = 2 and k = 1 for
its decoding principle.

Srivastava code is an interesting subclass of the alternant
code, which is similar to unpublished work [11], which is
proposed by J. N. Srivastava in 1967, a class of linear codes
which are not cyclic that are defined in form of the parity-
check matrices

H = {
αl

j

1− αiβj
, for 1 ≤ i ≤ r, 1 ≤ j ≤ n},

where α1, α2, · · · , αr are distinct elements of GF (qm) and
β1, β2, · · · , βn are all the elements in GF (qm), except
0, α−1

1 , α−1
2 , · · · , α−1

r and l ≥ 0. In the following, we define
the Srivastava code over a monoid ring instead of a polynomial
ring, which is in fact generalizes [1, Defination 4.1].
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Definition 7: A shortened Srivastava code of length n ≤ s
is a code over B that has parity check matrix

H =


αl

1
α1−β1

αl
2

α2−β1
· · · αl

n

αn−β1
αl

1
α1−β2

αl
2

α1−β2
· · · αl

n

αn−β2
...

...
. . .

...
αl

1
α1−βkpr

αl
2

α1−βkpr
· · · αl

n

αn−βkpr

 ,

where l, r are positive integers and {αi}1≤i≤n, {βi}1≤i≤kpr

are n + kpr distinct elements in Gs.
Theorem 7: A Srivastava code has minimum Hamming

distance d ≥ kpr + 1.
Proof: A Srivastava code has minimum Hamming distance at
least kpr+1 if and only if every combination of kpr or fewer
columns of H is linearly independent over <kp, or equivalently
the following submatrix

H1 =



αl
i1

αi1−β1

αl
i2

αi2−β1
· · ·

αl
ikpr

αikpr
−β1

αl
i1

αi1−β2

αl
2

αi2−β2
· · ·

αl
ikpr

αikpr
−β2

...
...

. . .
...

αl
i1

αi1−βkpr

αl
i2

αi2−βkpr
· · ·

αl
ikpr

αikpr
−βkpr


is nonsingular. However det(H1) =
(αi1 , αi2 , · · · , αikpr

)ldet(H2), where the matrix H2 is
given by

H2 =


1

αi1−β1

1
αi2−β1

· · · 1
αi

kpr
−β1

1
αi1−β2

1
αi2−β2

· · · 1
αi

kpr
−β2

...
...

. . .
...

1
αi1−βpr

1
αi2−β

kpr
· · · 1

αikpr
−β

kpr

 .

As det(H2) is a Cauchy determinant of order kpr, so it can
be concluded that

det(H1) = (αi1 , · · · , αikpr
)l(−1)

(
kpr
2

)
Λ,

where Λ = φ(αi1 ,···,αikpr)φ(β1,β2,···,βkpr)

v(αi1 )v(αi2 )···v(αikpr
) , φ(αi1 , · · · , αikpr

) =∏
ij>ih

(αij − αih
) and v(X) = (X − β1)(X − β2) · · · (X −

βkpr). So by Lemma 4 it follows that det(H1) is a unit in
<kp and therefore d ≥ kpr + 1.

Definition 8: Let r = (kpr)l and α1, · · · , αn,
β1, β2, · · · , βkpr be the n + kpr distinct elements of
Gs. Let ω1, · · · , ωn be the elements of Gs. A generalized
Srivastava code of length n ≤ s is a code over B that has
parity check matrix given by

H =


H1

H2

...
Hkpr

 , (4)

where

Hj =


ω1

α1−βj

ω2
α2−βj

· · · ωn

αn−βj
ω1

(α1−βj)
2

ω2

(α2−βj)2 · · · ωn

(αn−βj)
2

...
...

. . .
...

ω1
(α1−βj)

l
ω2

(α2−βj)
l · · · ωn

(αn−βj)
l


for j = 1, 2, · · · , kpr.

Theorem 8: A Srivastava code has minimum Hamming
distance d ≥ (kpr)l + 1.
Proof: Follows by Remark 2 and Theorem 7, because the
matrices of the Equations (3) and (4) are equivalents, whereas
h(X

1
kp ) = (X

1
kp − βi)l.

VI. CONCLUSION

In [1], cyclic codes, BCH, alternant, Goppa and Srivastava
codes over finite rings with length n = qmt−1, where m, t are
positive integers and q is any prime integer, are defined in such
way that r is the McCoy rank for corresponding parity check
matrices. Thought in this work we obtained cyclic, BCH,
alternant, Goppa and Srivastava codes over finite rings with
length n ≤ qkpmt − 1, where p is a prime integer and k =
0, 1, 2, · · · and kpr is the McCoy rank for corresponding parity
check matrices. Also, we used the monoid ring B[X; 1

kpZ0]
instead of a polynomial ring B[X;Z0], where B is any finite
commutative ring with identity.
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