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Epidemic SIR Model Applied to
Delay-Tolerant Networks
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Abstract— This paper presents an application and adaptation
of the epidemiological model known as Susceptible-Infected-
Recovered to the mathematical modeling of the process of
message forwarding in a Delay-Tolerant Network scenario char-
acterized by epidemic routing. Simulation results are compared
to the mathematical model indicating a good fit of the approach.
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I. INTRODUCTION

Delay-Tolerant Network (DTN) is a wireless network with
no infrastructure, whose overlay architecture was defined
to perform interoperability between and among Challenged
Networks, working above existing protocol stacks in various
network architectures [8], [6]. Challenged Networks, also
known as Intermittently Connected Networks, operate in chal-
lenging environments, where frequent link disruptions make
end-to-end paths between source and destination uncertain.
Such environments are characterized specially by: intermittent
connectivity, long delays and high error rates. DTN nodes
are capable to overcome these obstacles through a message
switching technique known as store-carry-forward, in which
nodes keep copies of messages stored for future forwarding,
once a connection is established [13], [19].

Mathematical modeling of DTN embraces the construction
of analytical models and performance evaluation of various
routing protocols and different simulation scenarios. This area
is the one with the most need of research work. The authors
of the most recent survey about DTN [13], which consolidates
publications between mid 2007 and June 2010, discussed the
research areas, the latest advances and the biggest challenges
still remaining. They also noticed analytical modeling and
performance evaluation to be one of the most important
challenging problems, specially due to the lack of a generic
analytical model for DTN.

The main motivation to the study of mathematical modeling
of DTN presented in this paper, besides the lack of the area, is
inspired by engineering, in the sense of network designs. The
main purpose of this study is to search for solutions which can
contribute to the construction of an analytical model for DTN,
that may help designers and engineers to define important
project parameters with certain degree of precision. Moreover,
a well adjusted model is a powerful instrument to analyze the
behavior of the real system.
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There are several proposals of routing protocols to different
varieties of DTN. In [21] different types of protocols are
presented, according to scenario, deterministic or stochastic,
and to the available knowledge about network topology. In
stochastic scenario, where the network behavior is aleatory
and practically unknown, the simplest protocol corresponds
to epidemic routing [18], and a DTN of this type is called
Epidemic DTN.

The process of forwarding messages using epidemic routing
in DTN is similar to what happens with the propagation of a
virus among humans. In a population, the spread of a infec-
tious disease, like influenza, occurs by transmission of a virus
through contact between individuals. An infective individual
transmits the virus to healthy individuals (susceptible), whom
then become new infected themselves, and also capable of
transmitting the disease forward.

In a similar way, a source node in an Epidemic DTN
transmits copies of a message to all nodes it encounters
(makes contact), and this procedure is also followed by the
intermediary nodes, until destination. This can be considered
the simplest behavior of a DTN, once there is no information
about the network topology, and other protocols are particular
cases of it. For this reason, our modeling will be conducted
to focus on the behavior of Epidemic DTN.

One of the main references to this work is [20]. In that
paper, the authors presented an analytical model for epidemic
routing based on an epidemiological model for the spread
of infectious diseases, with the purpose of showing how that
model “can be advantageously employed to study the perfor-
mance of various epidemic style routing schemes”. Despite of
not being explicitly written in [20], the epidemiological model
used as a base for that study was the Susceptible-Infected-
Recovered (SIR) model [7], [15], [16], which employs an ODE
(ordinary differential equation) system.

As it will be presented next, the SIR model has two dif-
ferent approaches to treat an infectious process, deterministic
and stochastic. This work adopted the stochastic approach
(Stochastic SIR model, Section II-B), while in [20] it was
given more attention and detail to the deterministic approach.

This work proposes an application of Stochastic SIR model
to Epidemic DTN. The main contribution of this article is
the development of a simple and direct adaptation of the
Stochastic SIR model to an Epidemic DTN scenario, showing
in a clear and objective way how the parameters related to the
epidemiological model can be adjusted to a DTN scenario.

The model predictions are compared to simulation results
and to predictions obtained from the Deterministic SIR model
(Section II-A) adaptation, using an expression presented in
[20], in order to evaluate the performance of both determinist
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and stochastic models.

The remain of this paper is structured as follows. Section
II presents the SIR model. Section III shows the applicability
of this model to Epidemic DTN. The mathematical modeling
itself is presented in Section IV and the results achieved
in Section V. Finally, the conclusions and future work are
discussed in Section VI.

II. EPIDEMIC SIR MODEL

Due to similarities between basic forwarding process in an
Epidemic DTN and the spread of infectious diseases in a
population, the idea of using epidemiological models as base
to create a model for DTN seems quite reasonable.

In the area of epidemiology, there is a large amount of
references to mathematical models for infectious diseases,
such as [1], [2], [3], [4], [7], [12], [17]. Among those models,
the renowned SIR model was chosen, as done by [20]. The
SIR model has two different approaches, deterministic and
stochastic, both presented next based mostly in [1], [7].

A. Deterministic SIR Model

The classical deterministic continuous time epidemic model
for the spread of infectious diseases defined by Kermack and
McKendrick dates back 1927 and it is still widely used until
today [15], [16].

Let N be the total number of individuals in a population.
Consider that the duration of an epidemic is much shorter
than the lifetime of the population, i. e., the size of the
population can be considered fixed, and, births and deaths not
related to the disease can be ignored. At any moment of time,
each individual find himself in a specific state according to
his disease status, dividing the population in three different
compartments:

e S - Susceptible: Individuals who are susceptible to be
infected;

o I - Infected: Individuals who have been infected with
the disease and are capable of spreading it to susceptible
individuals;

e« R - Recovered: Individuals who have been recovered,
becoming immune. In cases where death or isolation due
to the disease may occur, these will also be included in
this compartment, that will be called Removed.

An infection is represented by the transition from state
Susceptible to state Infected, and a recovery by the transition
from Infected to Recovered. Only these two transitions are
considered possible.

A Susceptible individual becomes infective right after hav-
ing contact with an Infected individual. The incubation period
is considered negligible and all contacts between Susceptible
and Infected result in infection. The model considers, also,
that, after recovery, individuals become immune, never return-
ing to Susceptible compartment.

Let x(t), y(t), z(t) be the number of susceptible, infected
and recovered individuals, respectively, at any moment of
continuous time ¢ > 0. Therefore, for all ¢ > 0:

z(t) +y(t) +2(t) = N (1)

Considering that individuals are homogeneously mixed in
the population, according to the Law of Mass Action [7],
the evolution of the epidemic is defined by the following
equations:

0 e @
W — g(eyy(e) - 1w G
dzg) =y(t) )

Initial condition: (x(0),y(0), 2(0)) = (x0, Y0, 0)

The parameter [ is the infection parameter and represents
the rate of contacts between two individuals. The parameter ~y
is the recovery rate and represents the rate in which Infected
individuals are recovered.

B. Stochastic SIR Model

Considering the same assumptions described in the deter-
ministic analysis, let N + I be the fixed number of indi-
viduals in a population subdivided in X (¢) susceptible, Y (¥)
infected and Z(t) recovered individuals, with initial condition
(X(0),Y(0),Z(0)) = (N,1,0), and for all ¢ > 0:

X)) +Yt)+Z(t)=N+1 5)

The stochastic model considers {(X(¢),Y(¢)) : ¢ > 0}
a Markov process with finite state space, dependent of two
random variables, X and Y. Each state is represented by the
pair (X (¢),Y(t)).

Considering, again, the homogeneous distribution of indi-
viduals, let 4t be a time interval small enough that only one of
the three possible events of state transition in the Markov chain
may occur within it, with respective infinitesimal transition
probabilities:

o Infection - Probability of a new infection event in dt:
Pr{(X,Y)(t+t) = (i — 1,j + DICXY)(0) = (i)}
= [Bijdt + o(dt)

(6)

o Recovery - Probability of a new recovery event in dt:

Pri(X,Y)(t +6t) = (i,j = DX, Y)(t) = (i,4)}
= jot + o(dt)
(N

o No state transition - Probability of no occurrence of
infection or recovery in dt:

Pr{(X,Y)(t +dt) = (i, /)[(X,Y)(t) = (i,4)}
=1—(Bi+~)jot —o(dt)
From the state probabilities
pij(t) = Pr{(X,Y)(t) = (i, )|(X,Y)(0) = (N, )}, (9
the Kolmogorov forward equations for this process are given
by:
doxt®) — _[(BN +v)pwi
Lfijt(t) =B+ 1)(F — Dpiv1,j—1 — 3(Bi +7)pij
+v(J + D)pij+1

with0<i+j<N+I,0<i<N,0<j<N+I, and
initial conditions px(0) = 1, p;;(0) = 0 otherwise.

(®)

(10)
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III. SIR MODEL APPLIED TO DTN

With the purpose of applying the SIR model to the Epidemic
DTN modeling, an analogy is made by defining three states
for the network nodes towards a message propagation:

« Available (Susceptible): Nodes that are available to re-
ceive a copy of the message;

o Transmitting (Infected): Nodes that have a copy of the
message stored and are capable of forwarding it to
available nodes;

o Unavailable (Recovered): Nodes that are unavailable to
receive or transmit a copy of the message.

At any moment of time, each node find itself in one of these
states. An Available node becomes “infected”, i. e., receives
a copy of the message, right after contact with a Transmitting
node, which configures an “infection”.

The time period necessary for connection and message
transmission between two nodes is considered negligible, i.
e., all contacts between Available and Transmitting nodes
result in a successful transmission of a message copy, being
only necessary for the Available node to be at range of a
Transmitting node. The same assumption was made in [20].
It’s important to notice that nodes receive one copy of the
same message only once.

“Recovery” situations are represented by the Unavailable
state, which covers cases of unavailability, both at forwarding
and receiving of a message copy. Unavailability at receiving
is considered when a Transmitting node, after discarding a
message copy due to time limitation (characterized by TTL
- time to live), saves that information to reject another copy
of that same message, becoming “immune”. Unavailability at
forwarding is considered when a destination node receives a
copy of the message. When it happens, the destination node
makes an automatic transition Available — Transmitting —
Unavailable, since, despite it stores a copy of the message, it
will not transmit the copy forward. This state could also cover
situations of physical destruction of nodes, causing its “death”
or permanent “removal” from the network.

IV. MATHEMATICAL MODELING

To begin the construction of Epidemic DTN mathematical
modeling, the stochastic treatment of SIR model was chosen
to be used as a base. This choice comes from the fact that
stochastic models are more appropriate to represent random
phenomena, such as the spread of infectious diseases and the
process of forwarding messages in Epidemic DTN. Besides,
in epidemiology literature, deterministic models are usually
employed to large populations, such as cities, countries and
even at a global level.

According to [7], “When the number of individuals is very
large, it is customary to represent the infection process deter-
ministically (...). However, deterministic models are unsuitable
for small populations, while in larger populations, the mean
number of infectives in a stochastic model may not always
be approximated satisfactorily by the equivalent deterministic
model.”

Moreover, an observation that reinforces this choice is
that the result obtained in [20] with the stochastic model,

to which the authors referred as “ODE system involving
second moments”, gives a better adjustment than with the
deterministic model.

The model obtained with the adaptation defined in Section
IIT of the Stochastic SIR model, presented in Section II-B, will
be denominated DTN Model.

DTN Model will then be represented by Eq. (5) to (10),
where X (t), Y (t), Z(t) correspond to random variables of
Available, Transmitting and Unavailable nodes, respectively. It
will also be considered that (X (0),Y(0),Z(0)) = (N, ,0),
and, (X,Y)(t) = (i,4). The parameter [ represents the
average number of contacts between two nodes per unit time,
and will be called contact rate. The parameter vy describes the
number of Transmitting nodes that become Unavailable per
unit time, and will be called unavailability rate.

This preliminary version of DTN Model is suitable for
Epidemic DTN modeling when the following information
is known: mobility model, speed of motion, message TTL,
transmission range and area of a limited region where nodes
move. Problems or errors at physical and data link layers are
not taken into account, and nodes are assumed to have enough
storage capacity so buffer overflow is not an issue.

A. Adaptation of Parameters

The parameters related to Stochastic SIR model, as pre-
sented, are: number N of Susceptible individuals at ¢ = 0,
number I of Infected individuals at ¢ = 0, time interval d¢,
infection parameter 3 and recovery rate +y.

The parameters related to DTN Model will then be: number
N of Available nodes at ¢t = 0, number I of Transmitting
nodes at ¢ = 0, time interval Jt, contact rate 3 and un-
availability rate . The challenge is to convert characteristics
and functionality of DTN into values for those parameters. In
practical terms, it means placing network parameters, e. g.,
transmission range and speed, into /3 and ~.

The first step is to analyze the contact rate 5. As well noted
by [20], an estimate for S was obtained by [10]. In that paper,
the authors showed, for Random Waypoint (RW) and Random
Direction (RD) mobility models [5], that the event of contact
between two nodes can be modeled by a Poisson distribution,
being the inter-meeting time distribution exponential, and the
contact rate estimate given by

2wrE[V*)
B~ 1z (11)

where w ~ 1.3683 is a constant specific to RW, L2 is the
area where nodes move, r is the range of each node (r < L)
and E[V*] is the average relative speed between two nodes
(the exact expression of E[V*] can be found in [11]). Eq.
(11) is the expression that will be used for the rate 5 on DTN
Model, being the probability of transmission of a message
copy (probability of “infection”) given by Eq. (6).

The next step is to analyze how to define the probability
of “recovery”, i. e., of transition of a Transmitting node to
Unavailable state, which is given by Eq. (7) on Stochastic
SIR model. Assuming that the message TTL is long enough
to allow delivery to occur before it ends, there will be no
copy discards before delivery. In that case, the unavailability
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situation to be considered is the one of destination node
receiving the message copy, which will represent the first
“recovery” of the process. So, the probability of “recovery”
on DTN Model is the probability of the destination node
having contact with some Transmitting node. Therefore, such
probability is given by 5jdt + o(dt), which gives v = .

B. Validation

The DTN Model validation presented here is performed
through comparison between simulation results and model
predictions.

To work with a representation of a real network, the simu-
lation tool called The ONE (The Opportunistic Network Envi-
ronment) v. 1.4.1 [14] was employed to create and simulate a
scenario as described next. The result obtained represents the
Epidemic DTN system that one desires to model analytically.

The scenario setting chosen to be used in the simulations has
the following characteristics: epidemic routing, transmission
speed of 1 Mbps, buffer size of 50 Mb, RW mobility model,
node speed between 4 and 10 km/h, total simulation time of
86400 s (24 h), update interval of 1 s, message TTL of 86401
s, range of 100 m and area of 8 x 8 km (L > r), where
nodes are randomly placed at £ = 0. The RW mobility model
was chosen for presenting better results compared to RD in
[10]. For each simulation, there is only one source node in the
network, at ¢ = 0, carrying one message of 10 bytes, which
has to be delivered to one particular destination node.

The parameters related to DTN Model should then be
configured according to scenario. Starting with the initial
condition, the scenario gives I = 1. The time interval 6t will
be the same one used as update interval for the simulation, in
that case, 6t = 1s. According to Eq. (11), 8 ~ 1.03335-1072,
and finally, v = (.

Following the approach presented for Stochastic SIR model,
a code in C language was created to execute 100000 (one
hundred thousand) sample paths on the Markov chain that
represents the process of infection and recovery, over time,
applying the Monte Carlo method to choose among possible
events (infection, recovery or no state transition) according
to each transition probability. The parameters for this model
were, then, adapted, as explained in Section IV-A, to make
this modified SIR model, named DTN Model, suitable to an
Epidemic DTN system.

With the purpose of having a metrics of comparison between
DTN Model predictions and simulation results, the absolute
difference between the number of Available nodes predicted
by the Model and the expected value, obtain by simulation,
was calculated, for every instant of time. The average value of
that difference in relation to the simulation value will be called
relative error. The same procedure was taken to Transmitting
nodes. In addition, the 98% confidence interval for the relative
errors was also calculated.

V. RESULTS

The Epidemic DTN scenario described in Section IV-B was
simulated with The ONE and modeled with the code developed

R = SimUlation —i—
a0 |- s, OTN Model
Ay ——

Available Nodes
a
=)

0 2000 4000 6000 8000 10000 12000
a
( ) Time (s)
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Simulation ——
9o | DTN Model m——
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80 r
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Transmitting Nodes

0 2000 4000 6000 8000 10000 12000

(b) Time (s)

Fig. 1. Results for Epidemic DTN simulation and modeling, for the
scenario described in Section IV-B with 100 nodes. (a) Available nodes. (b)
Transmitting nodes.

for DTN Model, varying the total number of nodes from 10
to 200.

With the purpose of comparing both SIR model approaches,
deterministic and stochastic, the expression for the number
of Transmitting nodes over time, obtained by [20] from a
Deterministic SIR model adaptation, was also implemented
in the code. Such expression is given by

- N
14+ (N —1)e BN’

Y () (12)
where NV is the total number of nodes excluding the destina-
tion. As already mentioned in the beginning, the authors of
[20] work with an adaptation of SIR model. From Eq. (12),
and knowing that before TTL no Unavailable node will exist
among those N nodes, i. e., X (t)+Y (¢) = N, it is possible to
obtain the expression for the number of Available nodes over
time, which is given by

N(N —1)

Xt = N — 1+ efNt

(13)

Fig. 1 shows the results obtained for the modeling of Avail-
able and Transmitting nodes, for a total number of 100 nodes,
using the Deterministic SIR model adaptation represented by
Eq. (12) and (13), and DTN Model. By observing the shape of
the curves in Fig. 1, one can notice that the epidemiological
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Fig. 2. Relative error for Epidemic DTN modeling for the scenario described
in Section IV-B, with 98% confidence intervals. (a) Available nodes. (b)
Transmitting nodes.

SIR model represents in a very similar way the behavior of
message forwarding process using epidemic routing in DTN.

Fig. 2 shows the comparison between relative errors of
deterministic model and DTN Model, with 98% confidence
intervals, for the modeling of Available and Transmitting
nodes.

The error values in Fig. 2 indicate that, as obtained in [20],
the DTN Model (stochastic) presents average relative error
smaller than the deterministic model, demonstrating a better
adjustment to the system modeled, confirming the expectation.
For a smaller number of nodes, however, the confidence
intervals intercept themselves, so it is not possible to compare
the performances of the models in those cases, specially for
Available nodes modeling. On the other hand, from 100 to 200
nodes, it is possible to affirm that the error for DTN Model is
smaller than for deterministic model.

VI. CONCLUSION

This paper presented the development of a mathematical
model for Epidemic DTN based on the stochastic approach of
epidemiological SIR model, which was named DTN Model.
The parameters of SIR model were adapted to consider
characteristics of an Epidemic DTN. Results obtained through
simulation and modeling in a specific scenario were presented,
along with the comparison between deterministic and stochas-
tic analysis for the modeling.

The results presented give a prosperous indication that the
epidemiological Stochastic SIR model can be adapted and
adjusted to the construction of an analytical model to Epidemic
DTN.

The DTN Model presented here is a preliminary version
that may suffer future adjustments to treat some assumptions
made, such as the inclusion of other unavailability situations
for nodes state transition. One interesting direction for future
work is to adjust the model parameters, or even to create an
extension to it, in order to aggregate more information about
the network and possible scenarios.
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