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Energy-Efficient Reconstruction of Environmental

Data with a Multihop Wireless Sensor Network
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Abstract—In this work, real environmental data are monitored
with a multihop Wireless Sensor Network (WSN). An algorithm
for energy conservation of sensor nodes is used to extend the
network autonomy, increasing its lifetime. Temperature and hu-
midity signals are sensed by nodes and transmitted to a sink node.
Both signals are reconstructed at the sink node, with samples
that it receives from sensor nodes. The algorithm considers the
variation rate of the monitored data, in order to manage the
need for communication. Thus, it aims at reducing the amount
of transmissions and nodes can sleep between transmissions, to
save energy. Simulations are performed, and we observed that
both signals could be reconstructed, with a significant decrease
in the amount of transmissions and an increase in the network
lifetime. Moreover, a high network connectivity is obtained, with
a packet delivery ratio greater than 90%.
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I. INTRODUCTION

Wireless communications have become ubiquitous. The

search for mobility and the easy deployment of wireless

networks are some of their advantages. These networks can

be classified as: Infrastructure, in which nodes are associated

with a base station; and ad hoc, with nodes that can directly

communicate with each other, without being controlled by the

base station [1].

A Wireless Sensor Network (WSN) is a special kind of

ad hoc network in which its nodes can collect data, as

temperature, pressure or humidity, communicate with each

other, and transmit them to a sink node. Sensor nodes have a

sensing unit, and three other basic units: A processing unit; a

communication unit, for transmission and reception tasks; and

an energy unit, composed by a battery. Sensor nodes have an

autonomy, operating as long as their batteries have energy [1].

There are several applications for WSN, like: Enemy troops

monitoring, sensing of biometric data from patients in a

hospital, industrial and home automation, or monitoring of

regions like caves or forests [2]. In this work, a WSN is used

to sense environmental data: Temperature and humidity. These

data were gathered by a WSN located in the Intel Berkeley

Research lab, and are available in [3].

Generally, nodes in a WSN are spread in areas of difficult

access, and it may be impossible to change nodes batteries,

when their energy ends. Thus, strategies to extend the network
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autonomy, by the conservation of nodes energy, are important

in a WSN. Communication is the task that spends more energy

in a sensor node [1]. So, it may be advantageous to process

data, aiming at reducing the amount of information, in order

to save energy. In [4], a survey of energy saving methods for

WSNs is presented, including a taxonomy of energy saving

schemes.

Two energy conservation algorithms for WSNs are proposed

in [5]. We use a WSN to sense and reconstruct a process, and

the proposed algorithms consider the variation rate of the pro-

cess to manage the necessity for communication. Thus, they

intent to reduce the amount of transmissions, and nodes sleep

between subsequent transmissions, entering in an inactivity

state, in order to save energy [6]. The monitored process is

reconstructed at the sink, with samples received from sensor

nodes.

In [5], the monitored process was simulated using a

synthetic-generic function. We intent to extend and validate

the results in [5] by using one of the proposed algorithms to

sense real environmental data. In this work, we considered

the Algorithm 2 proposed in [5], because the results showed

that this algorithm may keep the reconstruction error of the

monitored process (ε) to be less than a predefined threshold,

the acceptable maximum reconstruction error (δ). Moreover,

the reconstruction has to be energy efficient, as we intend to

increase the network lifetime, which is defined as the time

until the energy of the first node ends [7].

This work is structured as follows: In Section II, the

algorithm used and the signals to be reconstructed are briefly

described; in Section III, the energy model, and simulation

aspects are presented; Section IV shows the obtained results;

and conclusions are presented in Section V.

II. RECONSTRUCTION OF ENVIRONMENTAL DATA

In this work, an algorithm for energy conservation is applied

to sense temperature and humidity signals gathered by a WSN

located in the Intel Berkeley Research lab. In this WSN, 54

sensor nodes were sensing environmental data for more than

one month.

We define the temperature and humidity signals as functions

that depend on the sensor nodes coordinates xi and yi, and

time t, in which i is the index of a given node Si, i.e.,

sT (xi, yi, t) and sH(xi, yi, t), respectively. A node that is

deployed close to a light source, for example, tends to measure

samples with larger temperature values. Basically, each node

measures samples of the signals, and the algorithm uses

the variation rate of the monitored signal to estimate the
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next transmission, and the inactivity period of Si. The node

considers that the process varies linearly, and uses the last two

samples to perform the estimation [5].

Moreover, one constraint is imposed: The reconstruction

error to be less than a given threshold (δ). Thus, sensor nodes

can estimate a future measurement that will be transmitted

ŝti(k + 1) (and that is assumed to be received at sink node),

such that ε ≤ δ, using measured and transmitted samples. The

sink uses a first order interpolator to reconstruct the signals,

with the samples that it receives from sensor nodes. More

details about the estimator are presented in [5].

Sensor nodes are both information sources, measuring sam-

ples from the signals, and routers (relays), forwarding packets

from their neighbors. It is assumed that Si has an inactivity

period IPi, during which the node does not measure, process,

receive or transmit. Before Si enters the sleeping mode, it

verifies if it has neighbors that use it as a router. If this does

not occur, Si sleeps for γ×IPi seconds. If there are neighbors

that use it as a router, then Si sleeps for:

IPi = γ ×min(IPi, IPk), k ∈ Si,#, (1)

where each IPk represents the inactivity period of each neigh-

bor of Si. The sleeping period reduction factor γ (0 < γ < 1)
is used to increase the probability of Si being awake to forward

packets from its neighbors [5].

The algorithm is distributed and it runs directly in the ap-

plication layer of each sensor node. The flow of the algorithm

is presented in Algorithm 1, in which n is the current instant

of measurement or transmission, ECi represents the energy of

node Si, m indicates a measured sample, and nodes initially

have an inactivity period of 0.1 second, the timebase used in

the simulations. Furthermore, line 3 of Algorithm 1 indicates

that it runs while node Si has energy, in consonance with the

adopted concept of lifetime.

Algorithm 1 Algorithm implementation at sensor Si.

1: n ← 1

2: IPi ← 0.1
3: while ECi > 0 do

4: Si measures smi (n)
5: if n = 1 then

6: Si transmits smi (n)
7: else

8: Si transmits smi (n)
9: Si calculates IPi using linear estimation

10: if Si has packets to forward from # neighbors then

11: Si transmits packets from its # neighbors

12: IPi = min(IP1, IPk), k ∈ #
13: end if

14: Si sleeps for IPi = γ × PIi seconds

15: Si wakes up after IPi seconds

16: end if

17: n ← n+1

18: end while

Figure 1 shows the layout of the WSN of the Intel Berkeley

lab, with its 54 sensor nodes [3]. In this network, the (x,y)

coordinates of nodes S16, S24, S50 and S42, for example, are

(1.5,2.0), (1.5,30), (38.5,1.0) and (39.5,30). These coordinates

(in meters) are relative to the upper right corner of the lab.

Fig. 1. Layout of the WSN Berkeley lab.

III. ENERGY MODEL AND SIMULATIONS

The energy model used is a state-based model, in which

nodes may operate in two states: Inactive, saving its energy, or

active. The active state has four operation modes: Measuring,

processing, transmission, and reception. The energy model

considers the packet payload size and it is based on [8], in

which it is observed that there is a linear relation between the

energy consumption in the transmission mode and the size of

the packet payload.

The energy consumption of a node can be estimated, as a

function of the period of time in which the node stays in the

different operation modes.

ÊC =tI × CI + tA × CA

+tM × (CA + CM ) + tP × (CA + CP )

+ tR × (CA + CR) + tT × (CA + CT ), (2)

in which tI , tA, tM , tP , tR and tT are, respectively, the

cumulative sum of the time intervals in which a node remains

in inactive and active states, and in measuring, processing,

receiving, and transmitting modes. If a node is active, there

is an increment in its energy consumption, depending on the

task it is performing. The associated consumptions Cs of each

one of the states and modes are presented in Table I.

The simulations were performed in TrueTime 1.5 [9], a

simulation environment based in MatLab/Simulink and the

network standard was the IEEE 802.15.4 [10].

In this work, a multihop communication model is consid-

ered, and the Ad-hoc On Demand Distance Vector (AODV)

[11] routing protocol is employed.

For the scenario, we use a WSN with fifteen of the fifty-four

nodes of the WSN of [3]. We consider the sink node deployed

in the same position of node S20 of the Berkeley Research lab,

in the (0.5,17) coordinate, and this position is fixed in all tests.

In each simulation run, the positions of the fourteen sensor

nodes are sorted, using the other fifty-three node positions.

Each sensor node has temperature and humidity data.

The metrics used to evaluate the algorithm are: The percent-

age decrease in the amount of transmissions and the network
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TABLE I

STATIC SIMULATION PARAMETERS.

Node initial energy (J) 2.00

Transmission power (dBm) -5

Reception sensibility (dBm) -66

Radio range (m) 40

CI: Inactive state Cons. (mJ/s) 1.80

CA: Active state Cons. (mJ/s) 10.00

CM: Measuring mode Cons. (mJ/s) 18.00

CP: Processing mode Cons. (mJ/s) 18.00

CR: Rx mode Cons. (mJ/s) 62.40

CT: Tx mode Cons. (mJ/s) 58.62

Payload size (Byte) 1

lifetime increase, both with respect to a network without any

kind of energy management scheme; the reconstruction error

of the monitored signals, eT (xi, yi, t) and eH(xi, yi, t), for
temperature and humidity, defined in equations (3) and (4), in

which sT (xi, yi, t) and sH(xi, yi, t) are the monitored signals,

ŝT (xi, yi, t) and ŝH(xi, yi, t) are the reconstructed ones; and

the packet delivery ratio, the ratio between the amount of

receptions and the amount of transmissions in the network,

defined in equation (5).

eT (xi, yi, t) = sT (xi, yi, t)− ŝT (xi, yi, t), (3)

eH(xi, yi, t) = sH(xi, yi, t)− ŝH(xi, yi, t), (4)

PDR =
Received packets

Transmitted packets
. (5)

Each simulation was run ten times, for both temperature

and humidity signals, and a 95% confidence interval for the

mean is used, represented by vertical bars in the graphs.

Thresholds (δ) of 1%, 2%, 5% and 8% were considered,

allowing maximum reconstruction errors up to these values.

Moreover, we consider γ = 0.5 in the simulations, in order

to increase the probability of a node being awoken to forward

packets from its neighbors [5].

IV. RESULTS AND DISCUSSION

A. Energy conservation

Figure 2 presents the percentage reduction in the amount

of transmissions and the lifetime increase of the network, in

function of the δ threshold, for the monitored environmental

data: Temperature and humidity. Both metrics are evaluated

with respect to a network without any energy management

strategy. Figure 2 shows that the increase in the threshold leads

to greater transmission decrease and an increase in the network

lifetime. The increment of δ allows transmissions of samples

with greater percentage errors, and nodes can sleep for larger

periods of time, which means that less transmissions are done,

saving energy.

B. Reconstruction error

Figures 3 and 4 show the Cumulative Distribution Function

(CDF) of the reconstruction error of the monitored signals, for

temperature and humidity, respectively. The CDF represents
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Fig. 2. Transmissions decrease and lifetime increase × δ.

the probability of the reconstruction error (ε) being less than

a given threshold, i.e., P (ε < δ).

The increase of δ leads to the increase of the reconstruction

error (ε). This behavior is in consonance with results presented

in Figure 2. A higher network lifetime can be obtained, but

with less transmissions, and this leads to an increase in the

reconstruction error, because there will be less samples to

reconstruct the signal.
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Fig. 3. Reconstruction error CDF of the temperature signal.
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Fig. 4. Reconstruction error CDF of the humidity signal.

As presented before, the algorithm imposes the constraint

that the reconstruction error has to be less than the threshold

(ε ≤ δ). Figure 5 shows the maximum reconstruction error, in
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function of δ, for both monitored signals. It can be verified

that the constraint is satisfied in all cases.
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Fig. 5. Maximum reconstruction error × δ, for both signals.

It can be observed in Figures 3, 4 and 5, that the recon-

struction errors obtained for humidity data are greater than

the ones obtained for temperature data. In order to investigate

this problem, we evaluate the variation rate of the monitored

signals. We define the variation rates as the partial derivative

of both signals, in function of time:

s
′

T (xi, yi, t) =
∂sT (xi, yi, t)

∂t
, (6)

s
′

H(xi, yi, t) =
∂sH(xi, yi, t)

∂t
. (7)

Figure 6 shows the variation rate of the monitored signals,

for one node (S1) in one simulation run, for δ = 2%. Table

II presents the average and maximum variation rates of the

monitored signals, for all sensor nodes in one simulation

run, for δ = 2%. We verified that the monitored humidity

signal presented a variation rate larger than the monitored

temperature signal, for both average and maximum values.
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Fig. 6. Variation rate of monitored signals, for δ = 2%.

The algorithm used in this work in simulations considers the

variation rate of the monitored signal. The greater the variation

rate of the signal, the higher the number of required transmis-

sions. Thus, as the monitored humidity signal presented a rate

larger than the temperature one, there are more transmissions,

TABLE II

VARIATION RATE OF MONITORED SIGNALS, FOR δ = 2%.

Variation rate Temperature Humidity

Average 0.00002 0.00051

Maximum 0.0294 0.2025

in the humidity monitoring case, leading to a less significant

increase in the network lifetime, as shown in Figure 2.

Moreover, for signals with lower variation rates, nodes tend

to sleep for larger time periods. This behavior can be observed

in Figure 7, which presents the inactivity period for node S1

with δ = 2%, in one simulation run, and in the Table III,

which shows the average and maximum inactivity periods for

all nodes in one simulation run.
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Fig. 7. Inactivity periods for S1 node with δ = 2%.

TABLE III

INACTIVITY PERIODS FOR BOTH MONITORED SIGNALS, FOR δ = 2%.

Inactivity period Temperature Humidity

Average 3.7118 sec 1.1659 sec

Maximum 14.6594 sec 10.4643 sec

Figures 8 and 9 show the monitored and the reconstructed

temperature and humidity signals, for δ = 1% and for δ = 2%,

respectively. We can see that the reconstructed signals closely

follow the monitored ones.

C. Packet delivery ratio

Figure 10 shows the packet delivery ratio, in function of δ,

for both signals. For larger values of δ, nodes sleep more, and

this may impact the connectivity of the network. Moreover, we

verified a small decrease in this metric, for fixed thresholds,

in the case that nodes were monitoring humidity. As this

signal presented a larger variation rate than the other, more

transmissions are required, which may cause more dispute to

access the medium, and consequently collisions.
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Fig. 8. Monitored and reconstructed temperature, for δ = 1% and for
δ = 2%.
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Fig. 9. Monitored and reconstructed humidity, for δ = 1% and for δ = 2%.
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Fig. 10. Packet delivery ratio × δ.

V. CONCLUSIONS

We use a WSN to sense and reconstruct two environmental

signals: Temperature and humidity. These signals were ob-

tained from the database available in Intel Berkeley Research

lab [3]. An energy conservation algorithm that is distributed

and runs directly in the application layer of each sensor

node is used. The algorithm considers the variation rate of

the monitored signals to make a linear estimation of future

measurements and the inactivity periods of sensor nodes. The

algorithm also imposes a constraint, in which the reconstruc-

tion error of the monitored signals has to be less than a

predefined threshold.

We run simulations, considering a WSN with fifteen of

the fifty-four nodes of the Berkeley lab, and results show a

significant increase in the network lifetime. Both temperature

and humidity signals could be reconstructed, with errors less

than the threshold. We observed that the humidity signal varied

more than the temperature signal. As the algorithm tracks the

variation rate of the monitored signal, more transmissions were

required, when the WSN sensed the humidity signal. We also

evaluate the network connectivity, obtaining packet delivery

ratios larger than 90%.

For future works, we intent to implement the considered

algorithm in a real wireless sensor network, and validate the

results obtained with simulations.
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