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Abstract— Video Quality Assessment (VQA) is an important
factor to establish the quality of video communication and
processing systems, such as broadcasting and mobile television.
Video quality measurements affect directly video on demand
and video services providers, since they need to monitor the
broadcasting quality to compute optimal parameters that ensure
a satisfactory quality level. The objective video quality assessment
is a quick and low cost alternative compared with the subjective
evaluation. However, the VQA is not as reliable, because their
results are not always according to the perceived quality of the
Human Visual System (HVS). This fact occurs due the incapacity
of the objective algorithms in simulate the HVS characteristics.
This paper describes a novel objective algorithm that includes
spatial and temporal measurements, considering relevant re-
gions. To validate the proposed algorithm, was computed the
correlations coefficients between the objective measures and the
subjective scores, provided by LIVE Video Quality Database,
considering the following scenarios: H.264 and MPEG-2 encoding
and transmission of H.264 bitstreams over IP and wireless
networks. The simulation results suggest a significant enhance
of the evaluation capacity of the objective algorithms when
they were combined with spatial and temporal information and
considering blocks of relevance. Furthermore, the results indicate
that the proposed algorithm is a competitive alternative when
compared with classical objective algorithms such as MOVIE.

Keywords— Objective Video Quality Assesment, Structural
Similarity, Spatial Quality, Temporal Quality, Human Visual
System.

I. INTRODUCTION

Digital video bitstreams transmitted over error-prone chan-
nels, such as wireless channels, are subjected to transmission
impairments. The packet loss during TCP/IP transmission
causes distortions in the received video. Knowledge of the
video quality is important to maintain, control and possibly
enhance, the quality of the received video [1].

The VQA methodologies are subdivided into two categories:
objective and subjective. The objective methods, also called
objective metrics or objective algorithms, are designed from
mathematical models that, in general, compare stastistical
features of the video to estimate a quality measure. Subjec-
tive methodologies, in turn, evaluate the video quality via
psychophysical experiments, in which the observers watch
video sequences and evaluate the video quality according to a
personal concept of quality.
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The subjective approach is the natural way to assess of
the video quality [2]. Nevertheless, subjective experiments
are complex and time-consuming. Objective metrics are faster
and has lower cost than the subjective metrics, because their
results may be applied automatically to video systems, to
detect imperceptible degradations to the human eye. Objective
video quality assessment constitutes an important sector for
video services and processing systems, such as: vigilance
systems [3], video on demand [4], spatial transcoding sys-
tems [5] and video conferecing [6]. However, the classical
objective metrics, such as MSE (Mean Squared Error) and
PSNR (Peak Signal to Noise Ratio), present an unsatisfactory
correlation with the results provided by subjective evaluation,
compromising the reliability of their measures [7].

Visual attention is a cognitive ability that involves search,
selection and focus of relevant stimuli [8]. Experiments indi-
cate that the human visual attention is not equally distributed
throughout the image environment, but concentrates in a few
regions [9]. It is estimated that the inclusion of methods that
can identify the visual attention of a scene, i.e., assign a weight
to the visual importance of regions on the image, tends to
enhance the measures provided by the objective metrics.

The authors propose a new objective metric, for full ref-
erence video quality assessment, derived from the Struc-
tural Similarity Index with Perceptual Weighting (PW-SSIM),
which includes a visual attention model based on the blocks of
relevance from the edge detection and temporal information.
The proposed metric was compared with another objective
metrics, and presented results very competitive.

This paper is organized as follow. Section II describes the
Structural Similarity Index approach. Section III describes the
objective metric PW-SSIM. Section IV describes the algorithm
VAA-PW-SSIM that is based on blocks of relevance. Section V
is seen the description the metric TP-VQI that regards tempo-
ral information using the metric PW-SSIM, and in this section
is discussed the proposed metric that combining evaluation
of spatial and temporal information, by means of the indexes
VAA-PW-SSIM, PW-SSIM and TP-VQI. Section VI shows the
simulations results and section VII presents the conclusions.

II. STRUCTURAL SIMILARITY INDEX

The Structural SIMilarity (SSIM) [10] is a full-reference
approach to image and video quality assessment based on
the assumption that the Human Visual System (HVS) is
highly adapted to recognize structural information in the visual
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environment and, therefore, the changes in the structural infor-
mation provide a good approximation to the quality perceived
by the HVS.

Let f(x, y, n) and h(x, y, n) scalar functions that represent
2D video sequences. In which, x and y represents the rectan-
gular spatial coordinates and n represents the frame number.
The SSIM(f, h) is computed as a product of three measures
over the luminance plane: luminance comparison l(f, h), the
contrast comparison c(f, h) and the structural comparison
s(f, h):

l(f, h) =
2µfµh + C1

µ2
f + µ2

h + C1
, (1)

c(f, h) =
2σfσh + C2

σ2
f + σ2

h + C2
, (2)

s(f, h) =
σfh + C3

σfσh + C3
, (3)

that µ is the sample average, σ is the sample standard
deviation, σfh is the covariance, C1 = (0.01 · 255)2, C2 =
(0.03 · 255)2 and C3 = C2

2 .
The structural similarity index is described as

SSIM(f, h) = [l(f, h)]α · [c(f, h)]β · [s(f, h)]γ , (4)

in which usually α = β = γ = 1.
In practice the SSIM is computed for an 8×8 sliding squared

window or for an 11×11 Gaussian-circular window. The first
approach is used in this paper. Then, for two videos which are
subdivided into J blocks, the SSIM is computed as

SSIM(f, h) =
1

J

J∑
j=1

SSIM(fj , hj). (5)

III. PERCEPTUAL WEIGHTED STRUCTURAL SIMILARITY
INDEX

Regis et al. [11] proposed a technique called Perceptual
Weighting (PW), which combines the local Spatial Perceptual
Information (SI), as a visual attention estimator, with the
SSIM, since experiments indicate that the quality perceived
by the HVS is more sensitive in areas of intense visual
attention [12]. The SI is computed using the Sobel differential
operator, which estimates the magnitude of the gradient vectors
of the video.

The PW technique uses the local SI to weigh the most
visually important regions. This weighting is obtained as
follows: compute the magnitude of the gradient vectors in the
original video by means of the Sobel masks, then generate a
perceptual map in which the pixel values are the magnitude
of the gradient vectors. The frame is partitioned into blocks
8× 8 pixels, and the local SI in each block is computed as

SI(fj) =

√√√√ 1

K − 1

K∑
k=1

(µj − |∇f(k)|)2, (6)

in which, µj represents the sample average of the perceptual
map in a j-block and K is a total of gradient vectors in j-th
block. For the case that the frames are partitioned uniformly

in squares 8×8, K = 64. The Perceptual Weighted Structural
Similarity Index (PW–SSIM) is computed as

PW–SSIM(f, h) =

∑J
j=1 SSIM(fj , hj) · SI(fj)∑J

j=1 SI(fj)
. (7)

IV. BLOCK DETECTION WITH PERCEPTUAL WEIGHTED
STRUCTURAL SIMILARITY

Experiments indicated that the human visual attention is not
equally distributed throughout the image space, but concen-
trates on a few regions of interest [13], and the visual attention
is an important feature of the HVS to indicate the quality of
that region [14].

Based on the assumption that the edge information is closely
related to the visual attention, and taking into account that the
HVS is more sensitive to asses the quality for areas of higher
visual attention, a new approach to objective assessment of
video quality is proposed using the PW technique proposed
in [11] and a segmentation algorithm presented in [15].

Let T = {τi | τi ∈ Z [0, 255] and i = 0, 1, 2, . . . , P}
be a video signal with 28 luminance levels and P is the
image dimension. The magnitude of the gradient vector of
T is defined as [16]

| ∇T | =

[(
∂T
∂x

)2

+

(
∂T
∂y

)2
] 1

2

(8)

in which x and y denotes horizontal and vertical direction,
respectively.

Digitally, the magnitude of the gradient is approximated by

| ∇T | = [(O1 ∗ T )2 + (O2 ∗ T )2]1/2, (9)

in which ∗ denotes the liner filtering operation and

O1 =

 −1 0 +1
−2 0 +2
−1 0 +1

 , O2 =

 −1 −2 −1
0 0 0

+1 +2 +1

 ,
are the Sobel operators.

The gradient vectors are computed over the original video
and the resulting video is subdivided into D blocks, 8 × 8
pixels. The average amplitude of the gradient vectors are
computed for each block and the highest average among all
the blocks is found. The blocks classified as of higher visual
attention are those that present an average amplitude of the
gradient vectors obeying the condition

if µj,n ≥ φn ⇒ (j, n) ∈ U ,
φn =

µmax,n
R

,
(10)

in which µj,n is average gradient vectors in the block j and
in the window n, µmax,n is the largest value of average in all
blocks j, R is a constant, n is the frame number, j is the index
of the block and U is a set that contains the blocks with higher
visual attention. In the experiments R = 2.1 was the optimal
value that maximize the correlation for these sequences.

Only blocks that are below the threshold of Inequality 10
are considered in the calculation of the metric, i.e., the blocks
for which the average magnitude of the gradient vectors do
not obey the criteria are ignored. Figure 1 shows an example
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(a) Original frame (b) Gradient frame (c) Relevant blocks

Fig. 1: Result of the segmentation techinique presented in [15].

of this method for the video Glasgow [17], in which the
white squares in Figure 1c represent the blocks for which
the PW-SSIM metric is computed. The structural similarity
with the proposed segmentation algorithm is called VAA-PW-
SSIM (Visual Attention Areas into PW-SSIM Index). In [15],
is shown the an algorithm which computes using the objective
metric SSIM, in this work, it is computed using the PW-SSIM,
because this metric has shown better correlation results [11].

Mathematically, the local statistics µ, σ and σfh are com-
puted using the previously selected blocks, resulting in

VAA-PW-SSIM =
1

J

J∑
j∈U

PW-SSIM(fj , hj), (11)

and, Block Detection with PW-SSIM (called BD-PW-SSIM),
can be calculated making the combination of metrics VAA-
PW-SSIM and PW-SSIM, which considers the spatial infor-
mation in two different ways, combining blocks of relevance
with highest visual attention and spatial information over the
whole frame:

BD-PW-SSIM =
VAA-PW-SSIM + PW-SSIM

2
. (12)

V. TEMPORAL INFORMATION WITH PERCEPTUAL
WEIGHTED STRUCTURAL SIMILARITY

Many algorithms of image quality assessment are also
used for predicting the video quality. However, the video
presents a temporal component which is not considered in such
algorithms, which present an unsatisfactory correlation with
the mean opinion scores obtained from subjective evaluations.

The rate of the temporal changes in the video is quantified
by the differences of the pixels in the same spatial position of
sucessive frames [18]. A similar approach to the proposed by
Vu et al [19] was used to estimate the quality on the temporal
component, using the Multi-Scale Structural SIMilarity (MS-
SSIM [20]) index between of the differences of the subsequent
frames. The differences of the subsequent frames are computed
as follow:

Df,n = || fn+1 − fn ||,
Dh,n = || hn+1 − fn ||,

(13)

in which f and h are the original and distorted frames,
respectively, and n is the frame number.

In the proposed algorithm, the temporal quality is estimated
by means of the PW-SSIM index between the differences of
the frames (Df,n and Dh,n), in which the Temporal Perceptual
Video Quality Index (TP-VQI) is calculate as [21]:

TP-VQI =
1

N − 1

N−1∑
n=1

PW-SSIM (Df,n,Dh,n) , (14)

that N is the total number of frames.
The PW-SSIM index uses regions with large perceptual

changes and presents a better correlation than the MS-
SSIM [11]. The proposed objective video quality algorithm
in this article combines the spatial analysis (using the metric
BD-PW-SSIM, Eq. 12) and the temporal analysis (using the
metric TP-VQI, Eq. 14) to produce an overall video quality
estimative, computed as:

BD-TPW-SSIM =
BD-PW-SSIM + TP-VQI

2
. (15)

VI. SIMULATION RESULTS

The LIVE Video Quality Database (LIVE) [22], [23] was
used to compare the performance of the proposed algorithm
with the classical objective metrics, considering videos with
the following degradations: H.264 and MPEG-2 compression,
simulated transmission of H.264 compressed bit-streams over
error-prone IP and wireless networks. The videos used in LIVE
were: “Blue Sky”, “River Bed”, “Pedestrian area”, “Tractor”,
“Sunflower”, “Rush hour”, “Station”, “Park run”, “Shields”
and “Mobile & Calender”. For each video 15 test videos were
produced, with the degradations cited previously. They were
evaluated using the Absolute Category Rating (ACR) with a
continuous scale. Information about the parameters used to
distort the video, the conditions of the subjective experiments
and the processing of subjective scores can be found in [23].

Tables I and II present the performance of the algorithms in
terms of Pearson Linear Correlation Coefficient (PLCC) and
Spearman Rank Order Correlation Coefficient (SROCC), for
each distortion provided by the LIVE Video Quality Database.
The boldface correlation coefficients represent the two better
performances.

The correlation coefficients indicated that the proposed al-
gorithm is better mainly for wireless transmission of H.264 bit-
streams, and for transmission over IP networks. For the distor-
tions H.264 encoding the Temporal-ViMSSIM (T-ViMSSIM)
is the better one. Finally, the MOVIE showed the better
correlation for the distortions created by the MPEG-2 encod-
ing [24]. However, MOVIE takes approximately five hours to
compute the quality of a video with 250 frames and spatial
resolution of 768 × 432 [19], because the complexity of the
metric is much higher than the others. However, simulations
were performed for these same videos, using the metric
proposed BD-TPW-SSIM, coded in C programming language
and performed on two machines: a desktop with Intel (R) Core
2 Duo E7400, 3GB of DDR2 main memory model 800 MHz,
and operating system GNU/Linux 10.04.4 LTS, performed the
simulations of BD-TPW-SSIM with an average time of 63.3
seconds for each video and a notebook with Intel (R) Core
(TM) i5-2410M CPU 2, 3 GHz, and the operating system
GNU/Linux 10.04.4 LTS, with the average time of 52 seconds
for each video.

In the Table III presents the increase in percentage for
metrics: PW-SSIM, TP-VQI, VAA-PW-SSIM, BD-PW-SSIM,
and BD-TPW-SSIM, related to metric SSIM. The results in
bold is the highest gain. Concludes that combining spatial
and temporal information considering blocks of relevance from
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TABLE III: Increase of the performance in percentage of the correlation coefficient in relation to SSIM in LIVE database.

(a) Increase for the PLCC

Algorithm H.264 IP MPEG-2 Wireless All
PW-SSIM 9,28 % 24,30 % 21,91 % 18,72 % 17,98 %
TP-VQI 7,29 % 47,86 % 41,78 % 57,73 % 37,05 %

VAA-PW-SSIM 9,65 % 19,16 % 19,63 % 35,40 % 20,48 %
BD-PW-SSIM 9,07 % 19,83 % 24,95 % 34,98 % 20,46 %

BD-TPW-SSIM 25,12 % 53,82 % 45,66 % 58,38 % 41,15 %

(b) Increase for the SROCC

Algorithm H.264 IP MPEG-2 Wireless All
PW-SSIM 11,90 % 23,65 % 16,90 % 17,85 % 20,53 %
TP-VQI 21,86 % 66,40 % 33,83 % 57,29 % 40,65 %

VAA-PW-SSIM 3,29 % 25,41 % 7,16 % 39,58 % 22,90 %
BD-PW-SSIM 4,18 % 27,96 % 26,46 % 38,10 % 22,77 %

BD-TPW-SSIM 22,75 % 59,74 % 35,15 % 62,16 % 45,03 %

TABLE I: PLCC considering the scenarios presented in
LIVE [19].

Algorithm H.264 IP MPEG-2 Wireless All Data
PSNR 0.5492 0.4645 0.3891 0.6690 0.5621
SSIM 0.6656 0.5119 0.5491 0.5401 0.5444

MS-SSIM 0.6919 0.7219 0.6604 0.7170 0.7441
S-MOVIE 0.7252 0.7378 0.6587 0.7883 0.7451
T-MOVIE 0.7920 0.7383 0.8252 0.8371 0.8217
MOVIE 0.7902 0.7622 0.7595 0.8386 0.8116

S-ViMSSIM 0.7834 0.7503 0.7515 0.7837 0.7796
T-ViMSSIM 0.8810 0.6890 0.7909 0.8219 0.8122
ViMSSIM 0.8117 0.7322 0.7978 0.8327 0.8260
PW-SSIM 0.7274 0.6363 0.6694 0.6412 0.6423
TP-VQI 0.7141 0.7569 0.7785 0.8519 0.7461

VAA-PW-SSIM 0.7298 0.6100 0.6569 0.7313 0.6559
BD-PW-SSIM 0.7260 0.6134 0.6861 0.7290 0.6558

BD-TPW-SSIM 0.8328 0.7874 0.7998 0.8554 0.7684

TABLE II: SROCC considering the scenarios presented in
LIVE [19].

Algorithm H.264 IP MPEG-2 Wireless All Data
PSNR 0.4296 0.3206 0.3588 0.4334 0.3684
SSIM 0.6514 0.4550 0.5545 0.5233 0.5257

MS-SSIM 0.7051 0.6534 0.6617 0.7285 0.7361
S-MOVIE 0.7066 0.7046 0.6911 0.7927 0.7270
T-MOVIE 0.7797 0.7192 0.8170 0.8114 0.8055
MOVIE 0.7664 0.7157 0.7733 0.8109 0.7890

S-ViMSSIM 0.7713 0.6521 0.7694 0.7340 0.7690
T-ViMSSIM 0.8580 0.6650 0.7499 0.7951 0.7984
ViMSSIM 0.8559 0.6774 0.7630 0.8111 0.8211
PW-SSIM 0.7289 0.5626 0.6482 0.6167 0.6336
TP-VQI 0.7938 0.7571 0.7421 0.8231 0.7394

VAA-PW-SSIM 0.6728 0.5706 0.5942 0.7304 0.6461
BD-PW-SSIM 0.6786 0.5822 0.7012 0.7227 0.6454

BD-TPW-SSIM 0.7996 0.7268 0.7494 0.8486 0.7624

the edge detection provides better correlation to video quality
assessment when compared to SSIM.

The scatter plots presented in Fig. 2 illustrate the non-
linear behavior of the measurements of the proposed algorithm
with respect to the concept of quality of the observers on
the subjective experiments performed with the LIVE Video
Quality Database. In which, the line represents the curve of
the logistic function (discussed in [23]), and the dots are
the measured values, in axis of BD-TPW-SSIM is seen the

results of avaliation of the algorithm, and in axis Difference
Mean Opinion Scores (DMOS), its the result of subjective
evaluation. How much closer is the dots of the line, better is
the correlation.

VII. CONCLUSIONS

The authors proposed an algorithm to VQA that subdi-
vided the quality computation in spatial analysis and temporal
analysis. The overall quality assessment is an average of
these two analysis. A classification algorithm based on egde
detection that consider the arithmetic mean of amplitude of
vector edge considering only blocks of size 8× 8 that highest
average between all blocks, different of others algorithm, that
considerated all blocks in the frame. To predict the temporal
perceptual quality was used a simple technique in which
the PW-SSIM index is computed between the frames that
contain the differences among the pixels in the same spatial
position and in subsequent frames. The proposed algorithm
was validated using the LIVE Video Quality Database. It
showed satisfactory correlations and is an good alternative to
VQA.

ACKNOWLEDGEMENTS

This research was supported by the Federal Institute of Ed-
ucation, Science and Technology of Paraı́ba (IFPB - Campus
Campina Grande), by the National Council for Scientific and
Technological Development (CNPq/PIBIC), by the Federal
University of Campina Grande (UFCG), and by the Institute
for Advanced Studies in Communications (Iecom).

REFERÊNCIAS
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