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Abstract— Shortened and lengthened systematic Luby Trans-
form Codes (LT-codes) have been shown, in this paper, to perform
better than their equivalent mother codes by simulating trans-
mission of LT-coded information over a binary erasures channel.
The performance is improved as the shortening (lengthening)
factor is increased while reducing (keeping) its complexity, when
compared to the complexity of the mother code. The reported
performance of both shortened and lengthened systematic LT-
codes were obtained by designing the codes by using a truncated
robust soliton degree distribution. Our results shows alsothat
systematic LT-codes (despite the degree distribution) performs
better than non-systematic LT-codes.

Keywords— Shortened LT-codes, Lengthened LT-codes, Sys-
tematic LT-codes, Fountain Codes.

I. I NTRODUCTION

Luby-Transform Codes (LT-codes) have being proposed to
protect data transmitted over channels that can be treated as a
Binary Erasure Channel (BEC). A binary symbol transmitted
over a BEC is delivered, at the channel output, either the same
as the transmitted symbol or declared to be erased if not rec-
ognized as a0 nor a1. Many practical communication systems
are well modeled by scenarios that incorporate the BEC.

As praised in many previous papers [1] LT-codes are low
complexity codes which are very efficient. They are very
efficient in that they transmit, with high probability of success,
over a BEC with capacityC bits/channel-use, a block ofk
binary input symbols, by using binary-codewords with length
n not much larger thank

C , the minimum number of bits
required by Shannon’s channel coding theorem. The longer
the value ofk, the higher the efficiency.

LT-codes can be viewed as linear block codes with code-
words ci of length n obtained by the multiplication of the
corresponding information-wordui, of lengthk, by a k × n
matrixG (code generating matrix). The LT-codes are designed
by constructing a degree distribution which (as will be later
explained) plays a fundamental role in the system perfor-
mance. A procedure widely used to build new block codes
is to introduce simple modifications to a good mother code
[2] rendering a modified code with improved characteristics.

The analysis made, by simulating the transmission of en-
coded blocks trough a BEC channel, has shown that shortened
and lengthened LT-codes performs much better than plain LT-
codes. Our study has focused on systematic LT-codes.

The paper is organized as follows: Section II presents a de-
scription of both the conventional LT-codes. The shortenedand
lengthened LT-codes are presented in Section III. Simulation

The authors are with the Universidade Federal de Juiz de Fora. Financial
support of FAPEMIG and CAPES is gratefully acknowledged.

results are given in Section IV and the concluding remarks are
in Section V.

II. LT- CODES

We describe in this section the LT-encoder-decoder pair,
together with some useful degree distributions. [1], [2], [4].
Some notations which will ease the discussion of the length-
ened and shortened LT-codes are also introduced.

A. LT-encoder

Let us consider that a vectoru = (u1, u2, . . . , uk) with
k symbols is to be encoded. Both vectoru and the vector
c = (c1, c2, . . . , cn) that appears at the encoder output have
components belonging to the set{0, 1}. The componentscj,
j = 1, . . . , n are related to the input vector by

cj = u · gj =
k∑

ℓ=1

uℓ · gj,ℓ (1)

wheregj = (gj,1, gj,2, . . . , gj,k), are the column vectors of the
k×n code generating matrix. Constructing the code generator
matrix involves using the theory developed and explained in
the paper by Luby [1] and extended in other papers [4]. This
amounts, in the end, to establishing the Hamming weights
dj = ω(gj) of the column vectors and, to deciding which
vector components (the matrix elements on columnj) will
be set to1. The vector of weights of the column vectors,
d = (d1, d2, . . . , dn) are to be chosen at random and, in this
sense, can be viewed as the values observed when a sequence
of equally distributed random variables(D1, D2, . . . , Dn), is
sampled according to a finite support probability distribution
specified byP (Dj = i) = pi, (j = 1, . . . , n; i = 1, . . . , k).
Once the weightdj of column vectorgj has been established,
it remains to be decided which components will be set to
one. This can be done by selecting, at random and with equal
probability, thedj input symbols which will be summed up
to form the codeword componentcj .

A correspondence between the encoder described by 1 and
a bipartite graph can now be easily introduced by associating
every input symbolui with the input nodeαi and, in the same
vein, the codeword symbolcj can be associated to an encoder
output nodeβj . This graph will have an edgeeij connecting
nodesαi andβj if the generating matrix elementgij = 1.

A systematic LT-code will have generating matrixGs =[
Ik | P

]
, where Ik is an identity matrix of sizek and P

is a k × (n − k) generator matrix, constructed by tacking
the proper degree distribution similarly to what is done for
matrix construction of non-systematic LT-codes — the choice
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of degree distributions for systematic codes will be fully
explained in section II-C.

The encoding procedure for a fixed rate encoder withk
input symbols andn output symbols is summarized by the
following algorithm — thisLT-encoder is said to operate at
rate RLT = k

n or, in other words, with an expansion ratio
ρLT = n

k .

LT-encoding Algorithm

1) Initialize the encoder:

a) Specify the encoder degree sequenced =
(d1, d2, . . . , dn).

b) Specify thed-matrix Gd by constructing the ma-
trix column-vectorsgj = (gj,1, gj,2, . . . , gj,k) ac-
cording do the degree sequenced.

c) Set the encoder input to be the sequenceu =
(u1, u2, . . . , uk).

2) Generate the transmitted-codeword:find the encoder
outputc = (c1, c2, . . . , cn) according to equation 1.

B. LT-decoder

We next describe the decoding procedure. This procedure
works for non-systematics and systematics codes. Let us
suppose that the codewordc has be transmitted and that
v = (v1, v2, . . . , vn), the BEC channel output, has been
delivered to the receiver. Since the erased symbols are of no
use the first decoding step is to identify the position of the
erased symbols and, after purging these symbols, to adjust,
accordingly, the degree sequence to be used by the decoder. We
are considering that synchronism issues have being handled
and that the decoder degree vectord̃1 = (d̃1,1, d̃1,2, . . . , d̃1,n′)
are the degrees of then′ ≤ n non-erased received symbols
c̃1 = (c̃1,1, c̃1,2, . . . , c̃1,n′) (it should be noticed that̃c1
corresponds to the codeword that would have being transmitted
wered̃1 the encoder degree vector).

The decoder task is to estimate the transmitted informa-
tionu. To begin with, at Step 1, the decoder input is the vector,
of dimensionn′, c̃1 with its associated degree vectord̃1. To
begin with, the estimated transmitted information (decoder
output), ũ1 = (ũ1,1, ũ1,2, . . . , ũ1,k), is set to be a sequence
of erasures, i.e., for allℓ = 1, . . . , k the estimated symbol
values are set to erasures —̃u1,ℓ = E.

The decoding procedure starts with vectors(
c̃1, d̃1, ũ1

)
and produces a sequence of vectors

{
(
c̃1, d̃1, ũ1

)
,
(
c̃2, d̃2, ũ2

)
, . . . ,

(
c̃m, d̃m, ũm

)
} by suc-

cessively transforming the triple of vectors
(
c̃m, d̃m, ũm

)

and associated dm-matrix Gdm
into the triple(

c̃m+1, d̃m+1, ũm+1

)
with associateddm+1-matrix Gdm+1

.
To define this transformation which will be namedgraph
reduction let us recall that to every triple

(
c̃m, d̃m, ũm

)

there is graphGm (uniquely) associated with it.
Let the triple

(
c̃m, d̃m, ũm

)
and associated graph beGm =

(Am,Bm, Em). The setBm = {βm,j1 , βm,j2 , . . . , βm,Jm
},

with cardinalityJm, is the set of vertices associated to vector
c̃m — these will be calledβ-nodes orβ-vertices. Theα-nodes
set, Am = {αm,i1 , αm,i2 , . . . , αm,Im}, with cardinality Im,
is the set of vertices, associated to vectorũm. Em, with

cardinality
∑Jm

x=1 d̃m,x, is the set with edges(βm,j , αm,i)
where (j, i) are positions in matrixG

d̃m
corresponding to

gm,j,i = 1.

Definition (Graph reduction).
We say that a graphGm is reducible if there is one
component of vector̃dm, which is equal to1. The reduction
takes place by first identifying the degree1 vertex βm,j′ ,
with associated valuẽcm,j′ , with smallest indexj′. Let
the edge connected to this node be(βm,j′ , αm,i′). The
reduction transformation proceeds by constructing the vector
ũm+1 with the same values attached to vectorũm except
for the value attributed to vertex̃um+1,i′ (an erasure)
which is replaced by the valuêcm,j′ . The subset of the
β-nodes which are neighbors toαm,i′ , the newly valued
α-vertices, namely,Nm,i′ = {βm,j′

1
, βm,j′

2
, . . . , βm,J′

m
}, are

next identified and a vector̃cm+1 is created which has the
same values attached to vectorc̃m except for the components
{cm,j′

1
, cm,j′

2
, . . . , cm,J′

m
} which are to be replaced by

{cm,j′
1
⊕ ĉm,j′ , cm,j′

2
⊕ ĉm,j′ , . . . , cm,J′

m
⊕ ĉm,j′}. Finally,

the reduced graphGm+1 is the graph that remains when
suppressing theα-verticesαm,i′ and theβ-vertices belonging
to Nm,i′ (and, of course, the corresponding edges). ♦

The decoding procedure is summarized next.

LT-decoding Algorithm

1) Initial recursion decoding step

a) Initialize the the recursion step counter:m = 1;
b) Set the initial recursion decoder degree sequence

to d̃m = (d̃1,1, d̃1,2, . . . , d̃1,n′);
c) Specify thed̃1-matrix G

d̃1
by constructing the

matrix column-vectorsgm,j = (g1,j,1, g1,j,2, . . . ,

g1,j,k) according do the degree sequenced̃1;
d) Set the initial recursion decoder input to be the

sequencẽcm = (c̃1,1, c̃1,2, . . . , c̃1,n′);
e) Set the initial recursion decoder output to be the

sequencẽum = (ũ1,1, ũ1,2, . . . , ũ1,k) with ũ1,ℓ =
E for all ℓ = 1, 2, . . . , k;

f) Set G1 = (Am,Bm, Em) — G1 is the ini-
tial decoding-graph whereBm = {βm,j1 ,
βm,j2 , . . . , βm,Jm

} is a cardinality Jm set
of vertices associated to vector̃c1, Am =
{αm,i1 , αm,i2 , . . . , αm,Im} is a cardinalityIm set
of vertices, associated to vector̃u1, and E1 is a
cardinality

∑j1
x=1 d̃1,x set with edges(βm,j , αm,i)

where (j, i) are positions of matrixGd1
corre-

sponding togm,j,i = 1.

2) If graphGm is irreducible, go to final step (Step 5) —
a decoding failure has occurred;

3) Make a graph reduction by settingGm+1 =
(Am+1,Bm+1, Em+1) — Gm+1 is the reduced graph
with associated the triple

(
d̃m+1, c̃m+1, ũm+1

)
;

4) If there is a symbolũm+1,ℓ = E for some ℓ =
1, 2, . . . , k, increment the recursion counter (m = m+1)
and return to Step 2;

5) Stop — the estimated transmitted sequence is given by
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û = ũm+1.

C. Degree Distributions

LT codes do work properly only if a good degree distri-
bution is designed. This section describes thus some relevant
degree distributions that can be found in the literature. The
first degree distribution, the Ideal Soliton Degree Distribution
(ISdd), introduced in [1], is expressed by

ρ(d) =

{
1/k, for d = 1,

1
d(d−1) , for d = 2, 3, ..., k,

(2)

where ρ(d) is the probability that a given node has degree
d. The ISdd distribution has however some drawbacks, as
pointed out by Luby who proposed, in [1], a more practical
distribution, namely the Robust Soliton Degree Distribution
(RSdd). In order to specicy the RSdd, let us first introduce the
function

τ(d) =





R
d·k , for d = 1, 2, ..., k

R − 1,

R·ln(R/δ)
k , for d = k

R ,

0, for d = k
R + 1, ..., k,

(3)

in which δ is the probability of LT decoding failure and, for
some suitable constantc > 0, R = c ln(k/δ)

√
k. The RSdd is

then defined as

µ(d) =
ρ(d) + τ(d)

∑k
d=1

(
ρ(d) + τ(d)

) . (4)

Further improvement were obtained by Tee at all [3] who
proposed the Improved Robust Soliton Degree Distribution
(IRSdd). To describe the IRSdd let us introduce the setD =
{di | k · µ(di) < 1}. We thus have

µ′(d) =





µ(d) + ν for d = 1,

µ(d) for d /∈ D,

0 for d ∈ D,

(5)

whereν =
∑

d∈D
µ(d).

The distributions previously described are devised to design
non-systematic codes. Systematic LT codes can be built by us-
ing the Truncated Robust Soliton Degree Distribution (TRSdd)
proposed in [4] defined by

Ω(d) =





1
β′

[
1 + R

k + ν
]
, for d = γ,

γ
β′

[
1

d( d
γ
−1)

+ R
d·k

]
, for d = 2γ, ..., k·γ

R − γ,

R
β′·k

[
ln

(
R
δ

)
+ 1

k
R
−1

]
, for d = k·γ

R ,

0, for otherwise,
(6)

where γ is an integer number such that1 ≤ γ ≤ R and
β′ =

∑
d [ρ(d) + τ(d)] + ν.

III. M ODIFIED LT CODES

In this section, we describe two systematic LT-codes mod-
ifications named the Lengthened LT-Codes and Shortened
LT-Codes. These are well known code modifications which
consists in either augmenting the length of the information
sequence by concatenating to it a block of known symbols
or substituting a block of symbols from the the information
sequence by a known block of symbols. The effect of these
procedures is to improve the LT-codes performance.

A. Lengthened LT Code (LLT-code)

This modification is achieved by pre-appending a block
of ℓL known bits to the original information sequenceu.
Considering thatu0 is the lengthℓL block of known symbols
the resulting block isuL = (u0, u). Our simulation results
show no noticeable change of performance if the vector of
known symbols is a random vector or a vector of all ones or
all zeros. The systematic LT-code is now designed to encode
a lengthℓL + k augmented input vector i.e., has generating
matrix Gs,L = [ Ik+ℓL | PL ], of size ℓL + k × n + ℓL. It
should be noticed that, at the encoder output, the codeword is
cL = (u0, c), yet only the partc is to be transmitted (sinceu0

is meant to be known by the both the encoder and decoder).
At the receiver, the concatenation of the received information
v and the blocku0 of known symbols is fed to the decoder.

The LLT-code, has rateRLLT = k
n , equal to the rate of

the mother code (the original code from which the LLT-code
has been derived). We will refer to the ratio ofℓL and k as
the lengthening factorλL = ℓL

k . Notice that complexity of the
LLT-codes can remain the same as that of the plain systematic
LT-codes if one takesu0 = 0.

B. Shortened LT-Code (sLT-code)

Shortened LT-Codes represent a code modification with
smaller the encoding and decoding complexity as compared to
the complexity of an equivalent LT-code of same rate, ifu0 =
0. It forcesℓs of the k input symbols to have known values
and doesn’t increase the number of input symbols. We will
indicate the new input vector by the notationus = (u0, u)
and letℓs = |u0| be its length. The information vectoru thus
has lengthks = k− ℓs and the transmitted vectorc has length
ns = n − ℓs. The same matrixGs will be used to construct
the encoder and decoder. One thus have

RsLT =
ks
ns

=
k − ℓs
n− ℓs

.

(7)

andRsLT < RLT .

When comparing sLT-codes and LT-codes on an equal rate
basis the encoder has to output vectors of sizens = ks·n

k .
The mother-code generating matrix will beGs and the new
generator matrix to encode theks = k − ℓs input block is
Gs,s = [ Iks

| Ps ], where, it should be noticed,Gs,s is a
ks × ns systematic generator matrix. The sLT-code, withk
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input symbols andn output symbols, operates thus with a
shortening factorλs =

ℓs
k . We thus havens = n(1− λs).

IV. RESULTS

In this section results obtained via computer simulations are
presented and discussed. Simulations were run by transmitting
the LT-encoder output trough a BEC. To design the encoders
we have used, in all cases, the parametersc and δ equal to
0.1 and0.02, respectively.

We start by examining the influence on the performance of
the LT-code code when the degree distributions discussed on
Section II-C are selected to implement the code. Systematic
as well as non-systematic codes were examined. We next
compare the performance of LT-codes with the performance
of modified codes, namely, LLT-codes and sLT-codes — the
degree distribution rendering the best LT-code performance
was selected in all cases.

The performance of LT-codes for several degree distribu-
tions are displayed in Fig. 1-3. In Fig. 1, where the perfor-
mance parameter is the Bit Erase Rate (BErR) the results
obtained for fixed-rate, systematic and non-systematic, LT-
codes withk = 500 and n = 743 are presented — four
degree distributions, namely ISdd, RSdd, IRSdd and TRSdd
were examined. For the TRSdd we have chosen the value
γ = ⌊R⌋ = min{x ∈ Z|x ≤ R}. Observing Fig. 1, one realize
that IRSdd is the best degree distribution for non-systematic
codes. But, the best Degree Distribution for systematic codes is
TRSdd. We also see, moreover, considering all the examined
degree distributions, that systematic LT-codes have a better
BErR performance than non-systematics LT-codes. Another
interesting observation is that the LT-codes designed under
the TRSdd are worthless. In Fig. 2 the Failure Rate (FR) of
the examined LT-codes, again withk = 500 and n = 743,
is exhibited. Similarly to what has been observed under the
BErR-performance, Systematic LT-codes, constructed witha
TRSdd, yields the best FR-performance when compared to its
counterpart and performs better then the best non-systematic
LT-code (constructed with the IRSdd). Comparisons of LT-
codes operating in rateless mode — i.e., codeword symbols
are transmitted until all information symbols are correctly
recovered — can be made by observing the plots on Fig. 3.
These plots illustrates the redundancy (versus the BEC quality)
required in order to recover allk symbols correctly. It can
be seeing that the systematic LT-codes constructed under the
TRSdd will require the smaller redundancy on a good quality
channel (Pe smaller 0.15). When non-systematic LT-codes
are considered the IRSdd is the best independently of the
BEC quality. Important to highlight, in this figure not appear
the TRSdd for non-systematics code because this distribution
does’t work for non-systematics codes.

The main contribution of this work is the analysis of
the performance of lengthened and shortened systematic LT-
codes. This comparison is showed in figures 4 to 6. To every
simulation shown in these figures we have useγ = ⌊R⌋. Fig.
4 presents the BErR versus Channel Quality for conventional,
lengthened and shortened systematic LT-codes built under
TRSdd.
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Fig. 1. BErR versus Channel Quality for systematic and non-systematic
LT-codes with ISdd, RSdd, IRSdd and TRSdd degree distributions.
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Fig. 2. FR versus Channel Quality for systematic and non-systematic LT-
codes with ISdd, RSdd, IRSdd and TRSdd degree distributions.

Fig. 4 shows that whenℓL or ℓs increase the code’s perfor-
mance improves. It also shows that lengthened or shortened
codes is better than conventional LT-codes. Moreover, short-
ening proves to be better than lengthening, in this situation.

Fig. 5 displays FR versus Channel quality for the same
scenarios as that on Fig. 4. Again, at equal rates, shortened
codes performs better than lengthened codes and improved
their performances asℓL or ℓs increase.

Finally, Fig. 6 shows the redundancy, versus channel quality,
required to ensure that allk symbols are correctly recovered.
In this figure, we see that for channels withpe ≥ 0.9 all
codes performance are about the same. Otherwise, he best
performance is obtained with shortened codes. For example,
at pe = 0.8 LT-codes require that2.55k symbols be received
before all symbols are recovered. Lengthened LT-codes, with
λL = 0.3, requires2.075k while shortened LT-codes, with
λs = 0.3, requires only1.631k symbols to be received.

V. CONCLUSIONS

Shortened and lengthened LT-codes have been investigated
in this paper. The most relevant observation, is that the
shortened codes performs better than their counterparts either
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Fig. 3. Redundancy versus Channel Quality for systematic and non-
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Fig. 4. BErR versus Channel Quality for tradicional, lengthened and
shortened systematic LT-codes with TRSdd degree distributions.

in terms of redundancy, failure rate or bit erasure rate. This
performance is much better when operating on a poor channel
(pe ≤ 0.9) — which may be advantageous when the channel
quality has a wide range variation. Shortened and lengthened
LT-codes have their performance improved as both the shorten-
ing rate and the lengthening rate are, respectively, increased.
It is worth mentioning that the encoding and decoding of a
shortened LT-code requires a smaller complexity when com-
pared to the complexity of the mother code if the information
bits forced to be know are all zeros (otherwise the complexity
is kept the same). Similarly the encoding and decoding of a
lengthened LT-code keeps the complexity the same as that of
the mother code if the information bits introduced for the elon-
gation are all zeros (otherwise the complexity will increase).
The reported performance of both shortened and lengthened
systematic LT-codes were obtained by designing the codes
with the TRSdd since this has been the degree distribution that
resulted on the best performance for the mother codes. Non-
systematic codes performs better when the IRSdd is selected. It
should be further emphasized that systematic LT-codes (despite
the degree distribution) performs better than non-systematic
LT-codes. We conclude thus that modifying LT-code are a good
implementation alternative when transmitting information over
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Fig. 5. FR versus Channel Quality for tradicional, lengthened and shortened
systematic LT-codes with TRSdd degree distributions.
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Fig. 6. Redundancy versus Channel Quality for tradicional,lengthened and
shortened systematic LT-codes with TRSdd degree distributions.

a binary erasures channel if the code is to be used in unicast
mode. If multicast transmission is needed further investigation
is required. We are currently investigating the use of modified
LT-Codes when used on channels other than the BEC.
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