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Bipartite HMM Model for Burst Errors Focused on
the Generation of Gaps and Clusters

N. Maciel, Elaine C. Marques, M. Grivet and Ernesto L. Pinto

Abstract—A new Hidden Markov Model (HMM) for burst er-
rors is proposed. This model is based on a compact representation
of the error sequence in terms of succeeding pairs of clusters and
gaps lengths. Its Markov chain has two classes of states associated
to the generation of gaps and clusters lengths, respectively.
The proposed model may be characterized by few parameters.
An algorithm for ML (“Maximum Likelihood”) estimation of
these parameters on the grounds of the EM (“Expectation-
Maximization”) approach is derived. Some preliminary results of
performance evaluation show that the model and the estimation
algorithm here presented provide a flexible and efficient tool for
capturing and reproducing statistics of interest in the context of
burst errors modelling.
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I. INTRODUCTION

In several communications scenarios, such as wireless com-
munications systems, the statistical properties of the error
process have great impact on the overall performance of the
system [1], [2]. In particular, the occurrence of burst errors in
the lower-level layers may severely degrade the performance
of the upper layers of the protocol stack.

Burst errors can be originated in the propagation environ-
ment (fading), in the impulsiveness of noise, in interferences,
or even in processing techniques with intrinsic memory mech-
anisms, such as decoding of convolutional codes and decision
feedback equalization [3].

The development of accurate mathematical models that
reproduce the statistical properties of error samples is of
great interest to evaluate the effect of burst errors on the
performance of higher-level protocols and also to develop
effective countermeasures.

The most commonly used mathematical models to represent
error processes with memory are based on hidden Markov
chains (HMM - Hidden Markov Model) [2]. In general,
these models are adjusted to empirical data by Maximum
Likelihood (ML) estimation of its parameters, and the Baum-
Welch algorithm (BW) is the main tool employed for this
aim [4].

To the best of our knowledge all previous works in this
field are based on a binary representation of the error sample.
However, these samples frequently have long intervals without
errors, which lead to long runs of a same bit in the binary
representation. Besides being inefficient, this representation
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also leads to numerical difficulties for parameter estimation,
since the most used estimation algorithm (BW) performs
several computations for each symbol in the error sequence
[4]. Some works have dealt with this problem by proposing
alternative estimation algorithms tailored to efficiently process
error binary data with long sequences of correct bits [5], [6].

We propose a different approach to HMM modelling of
burst errors, which is rooted on a parsimonious representation
of the error sample in terms of clusters (strings of errors
between two correct decisions) and gaps (blocks of correct
decisions between two errors). The basic idea is to develop
HMM models whose output is a sequence of gaps and clusters
lengths. Our expectation is to obtain flexible models with few
parameters to estimate.

As a first attempt to materialize this idea, we propose in
this paper a new HMM model for burst errors with two
classes of hidden states that are responsible for the generation
of gaps and clusters lengths, respectively. Only transitions
between states of different classes are assumed to occur.
The proposed model may be parameterized by a small set
parameters characterizing the conditional probability distribu-
tions of gaps and clusters lengths, besides the state-transition
probabilities. An EM algorithm for Maximum Likelihood
estimation of those parameters is derived. Preliminary results
of performance evaluation are presented. They have been
obtained by assuming that the conditional distributions or gaps
and clusters lengths are geometric distributions. These results
show that the HMM model and the estimation algorithm herein
presented are potentially useful and advantageous in the sense
of providing flexible modelling of burst errors with a reduced
set of parameters.

The paper is organized as follows. Section II introduces
some concepts and definitions of statistical parameters usually
adopted to characterize burst errors. The proposed model is
presented in section III. The estimation of its parameters is
addressed in section IV. Simulation results of performance
evaluation are given in section V. Concluding remarks and
directions for future works are presented in section VI.

II. BURST ERRORS

An error sample is usually represented as a sequence of bits
zero and one that indicate correct decisions and the occurrence
of errors, respectively. An error cluster (EC) is a sequence
where the errors occur consecutively, and has a length equal
to the number of ones [7]. A gap (G) is defined as a string of
consecutive zeros between two ones, having a length equal to
the number of zeros [1]. An error-free burst (EFB) is defined
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as a sequence of zero with a length of at least η bits, where η

is a positive integer [8]. An error burst (EB) is a sequence of
zeros and ones starting and ending with a “1”, and separated
from neighboring error bursts by error-free bursts [8], [9].
Fig. 1 illustrates these definitions.

Fig. 1. An example of error sequence highlighting lengths of gaps (G),
clusters (EC), bursts (EB) and error-free bursts (EFB), for η = 3.

Three commonly used burst error statistics are:
• the gap distribution, characterized by the probabilities of

gap-lengths mg , here denoted by G(mg) [1].
• the error cluster distribution, i. e., the probabilities of

error-cluster lengths mc, denoted by C(mc) [1].
• the autocorrelation function, denoted by ρ(Δk),which is

the conditional probability that the Δk bit following an
error bit is also in error.

III. PROPOSED MODEL

Fig. 2 illustrates the proposed HMM model. It has two sets
of hidden states associated with the generation of gaps and
clusters, which are denoted by Ωz � {Z1, Z2, . . . ZM} and
Ωu � {U1, U2, . . . UN}, respectively.

Fig. 2. The HMM model proposed.

The allowed transitions are between states of different
classes only, so the state transition probability matrix is
expressed as:

T �

�

0 A

B 0

�

,

where A = [aij ]M×N , B = [bij ]N×M , aij = P [ek+1 =
Uj |ek = Zi] and bij = P [ek+1 = Zj|ek = Ui].

Without loss of generality, we assume that the observed data
begins with a gap. The observations at time indexes 2k − 1

and 2k correspond to lengths of succeeding gaps and clusters
which are modelled as discrete random variables y2k−1 and
y2k. These random variables take values in the set {1, 2,
3,...} with conditional probabilities P (Y2k−1|e2k−1 = Zi) and
P (Y2k|e2k = Uj).

The parameters of the conditional distributions of y2k−1 e
y2k form the vectors θz and θu, respectively. Without loss of
generality we also assume that these distributions are defined
by a single parameter, so θz = [θiz, i = 1, 2, . . . ,M ] and
θu = [θjz , j = 1, 2, . . . , N ].

IV. ESTIMATION ALGORITHM

Following the EM approach to ML estimation, we consider:
• as incomplete data, the random sequence of outputs of

length 2K , denoted by y = (y1, y2, . . . , y2K);
• as complete data, the sequence of outputs and the

corresponding sequence of states, denoted by x = (y, e),
where e = (e1, e2, . . . , e2K).

We also define θy � [θz, θu] and θ � [T,θy].
The function to be maximized in the M step of the algorithm

is expressed as:

Q(θ,θ′) � E
x|Y,θ′{lnP (x|θ)}

=
�

X

lnP (X|θ)P (X|Y, θ′) (1)

where Y is a sample of the “incomplete data” and θ
′ the

current vector of parameter estimates, used to evaluate the
above shown expectation.

It should be noted that

P (X|θ) = P (Y,E|θ) = P (E|θ)P (Y|E, θ)

= P (E|T)P (Y|E, θy).

On the other hand,

P (X|Y, θ′) =

�

P (Y,E|θ′), if X = (Y ,E).
0, if X = (Y ,E)

Using the last two equations in (1) we obtain:

Q(θ,θ′) =
�

E

lnP (E|T)P (Y,E|θ′) +

+
�

E

lnP (Y|E, θy)P (Y,E|θ′) (2)

Regarding (2), it should be noticed that:
• The two parcels on the right side can be maximized

separately in its parameters;
• The maximization of the first parcel leads to calculations

that are similar to those used to re-estimate the state-
transition probabilities within the Baum-Welch algorithm.

The maximization of the second parcel on right side of (2) is
considered in the following, where it is denoted by Qy(θy, θ

′).
The problem to be addressed is therefore to maximize in θy

the function:

Qy(θy, θ
′) �

�

E

lnP (Y|E, θy)P (Y,E|θ′). (3)
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Maximization of Qy(θy, θ
′)

We begin by expressing P (Y|E, θy) as

P (Y|E, θy) =
K
�

k=1

P [Y2k−1|E2k−1, θz]
K
�

k=1

P [Y2k|E2k, θu],

(4)
and using this expression in (3) to obtain

Qy(θy, θ
′) =

�

E

K
�

k=1

lnP [Y2k−1|E2k−1, θz]P (Y,E|θ′) +

+
�

E

K
�

k=1

lnP [Y2k|E2k, θu]P (Y,E|θ′). (5)

The two parcels on right side of (5) can be maximized
separately, following similar approaches.

Considering only the first parcel and using an specific
notation, the problem of interest consists on maximizing in
θz the function defined by

Qz(θz, θ
′) �

�

E

K
�

k=1

lnP [Y2k−1|E2k−1, θz]P (Y,E|θ′).

(6)
It should be noted that this function may also be given by

�

E2k−1

K
�

k=1

lnP [Y2k−1|E2k−1, θz]G(Y, E2k−1, θ
′) (7)

in which G(Y, E2k−1, θ
′) is defined by:

�

E1

...
�

E2k−2

�

E2k

. . .
�

E2K

P [Y, E1, E2, . . . , E2K |θ′] (8)

In fact, G(Y, E2k−1, θ
′) = P [Y, E2k−1|θ

′], so the function
to be maximized can be rewritten as:

Qz(θz, θ
′) =

M
�

i=1

K
�

k=1

lnP [Y2k−1|Zi, θ
i
z]P [Y, E2k−1 = Zi|θ

′]

(9)
At this point, it is worth to notice that the probabilities

P [Y, E2k−1 = Zi|θ
′] can be efficiently computed, in a similar

way to what is done in the BW algorithm.
To illustrate the maximization of Qz(θz, θ

′), i.e. the re-
estimation of {θiz} within this EM algorithm, we consider a
model in which the lengths of “gaps” generated in the state
Zi are modelled by a geometric distribution of parameter θiz
given by:

P [Y2k−1|Zi, θ
i
z] = P [y2k−1 = Y2k−1|Zi, θ

i
z]

= θiz
(Y2k−1−1)

(1− θiz), i = 1, 2, ...,M

In this case, Qz(θz, θ
′) can be expressed as:

Qz(θz, θ
′) =

M
�

i=1

[m̂(y, Y , Zi|θ
′)− P̂ (Y , Zi|θ

′)] ln θiz +

+ P̂ (Y , Zi|θ
′) ln(1− θiz) (10)

with

P̂ (Y , Zi|θ
′) =

K
�

k=1

P [Y, E2k−1 = Zi|θ
′],

and

m̂(y, Y , Zi|θ
′) =

K
�

k=1

Y2k−1P [Y, E2k−1 = Zi|θ
′].

By solving the equation

∂

∂θiz
Q(θz, θ

′) = 0 (11)

in θiz , we obtain:

θiz =
m̂(y, Y , Zi|θ

′)− P̂ (Y , Zi|θ
′)

m̂(y, Y , Zi|θ
′)

(12)

Equation (12) corresponds to the updating of the estimates
of {θiz} for i ∈ {1, 2, . . . ,M}.

If the geometric-distribution model is also used for condi-
tional cluster-length distributions, a similar equation should be
employed for parameter updating.

Summing up, the proposed estimation algorithm uses oper-
ations similar to those of the BW algorithm to update the es-
timates of state transitions probabilities, and uses expressions
like (12) to update the estimates of the other parameters, i.
e. the parameters of the conditional distributions of gaps and
clusters. The computation of auxiliary variables may also be
made for efficiency improvement, in an identical fashion to
what is done in the BW algorithm [4].

V. SIMULATIONS AND RESULTS

In this section we present the results of two experiments
performed to evaluate the ability of the proposed model to
capture the statistical properties of burst-error samples.

A. Experiment 1

In this experiment, the target error sequence was produced
by an instance of the proposed HMM model with a cluster
state (U) and two gap states (Z1 and Z2). The transition
probability from U to Z1 was set at 0.8 and the parameters
of the conditional distributions of outputs were θz1 = 0.98,
θz2 = 0.96 and θu = 0.02.

We used a target error sequence of gaps and clusters lengths
with one million samples (500000 gaps and 500000 clusters).
It turned into a binary error sequence of length 23, 010, 273
with a bit error rate of 0.022. The log likelihood of the tested
instance of the proposed model for the target error sequence
was −2, 447, 117.

In order to check the consistency of the proposed EM
algorithm, we applied it to estimate the parameters of this
instance of the proposed model.

After 500 iterations we obtained the estimates θ̂z1 =
0.979378, θ̂z2 = 0.949944, θ̂u = 0.0200363, and a log
likelihood of −2, 447, 134. These results indicate that the
proposed algorithm may produce precise estimates of the
model parameters.

In the continuation of this experiment, we generated 100
independent sequences one million samples by running the
model with the estimated parameters. The burst error statistics
presented in section II were empirically evaluated using these
samples, as well as the original target error sequence. The
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Fig. 3. Estimates of the gap distribution for Experiment 1.
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Fig. 4. Estimates of the cluster distribution for Experiment 1.

results so obtained are shown in Fig. 3, 4 and 5, in which the
curves in red have been correspond to results obtained with the
target error sequence and the curves in blue have been obtained
from the error sequences generated with the estimated model.

On the basis of results of this experiment we can say that
the estimation algorithm seems to work properly.

B. Experiment 2

The results of Experiment 1 motivated us to investigate
the ability of the proposed model to capture the burstiness
of a target error sequence produced by a fading channel.
With this aim we generated a binary error sequence of length
10, 000, 000 produced by a time-varying Rayleigh channel
with Jakes’ Doppler spectrum. The SNR was fixed at 20dB
and the normalized maximum Doppler shift fDT at 10−3.

For the sake of comparison, we used this sequence to
estimate the parameters of one instance of the proposed model
and a Fritchman model [7]. The state-space of an N-state
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Fig. 5. Estimates of the error autocorrelation function for Experiment 1.

Fritchman model is partitioned into two groups: the first group
is composed by k states that only generate error-free outputs,
and the second group is composed of N−k states that generate
errors only. The allowed state transitions are between states of
different groups, besides self-transitions.

In this experiment we considered a 5-state Fritchman model
with 3 error-free states and 2 error states. In respect of
the proposed model, we considered an instance with 3 gap-
generating states and 2 cluster states. These two models have
12 parameters to be estimated. In the case of the Fritchman
model, the BW algorithm was used for parameter estimation.

Table I shows the average processing time for each iteration
obtained in this experiment. In this table “TF ” and “TP ”
respectively denote the processing time of the BW algorithm,
for the Fritchman model, and the processing time of the
proposed EM algorithm, for the model here proposed. We can
see that the processing time spent with the proposed model
is much smaller that the one necessary for estimating the
Fritchman model.

TABLE I
AVERAGE PROCESSING TIME FOR EACH INTERACTION IN EXPERIMENT 2.

TF TP

150 seconds 7 seconds

Figures 6, 7 and 8 show the estimates of the burst-error
statistics under consideration that have been obtained in this
experiment. The procedure adopted to obtain these estimates
was similar to that described in the previous section, except
for the fact that only one sequence of outputs was generated
with both the Fritchman model and the one here proposed.
These figures show that the two models give rise to similar
fits of burst-error statistical parameters.

These preliminary results show that the proposed model
and algorithm are promising tools for burst error modelling. It
should be noticed that several instances of the proposed model
should be tried in order to well modelling error sequences, by
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Fig. 6. Estimates of the gap distribution for Experiment 2.
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Fig. 7. Estimates of the cluster distribution for Experiment 2.

adopting different combinations of gap-generating and cluster-
generating states, as well as using other distributions for
modelling the lengths of gaps and clusters produced in each
state.

VI. CONCLUSION

A new HMM model for burst errors has been proposed,
which is based on the generation of succeeding pairs of gaps
and clusters lengths and may be characterized by a set of few
parameters to be adjusted to data. A simple algorithm for ML
estimation of those parameters has been derived by following
the EM approach. Some preliminary numerical results showed
that the proposed model and the estimation algorithm may
provide a flexible and effective tool for capturing and repro-
ducing several statistics of interest for burst error modelling.
In particular, it was verified that the model and estimation
algorithms here proposed are able to produce reasonably good
fits to data in a much smaller time than a Fritchmam model
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Fig. 8. Estimates of the error autocorrelation function for Experiment 2.

with the same number of parameters adjusted by the Baum-
Welch algorithm. We stress that we have just started to exploit
the potential of this model and there are several possibilities
for amendments on its structure and/or in the distributions
of gaps and clusters to be used. We have therefore good
reasons to think that there is room for improvements and much
better numerical results may be obtained on the grounds of the
proposed methodology for burst error modelling. A more in-
depth investigation of the performance characteristics of this
modelling approach, as well as other applications to the burst-
error processes generated in communication systems of current
interest will be pursued in future works.
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