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Control in Trellis Codes produced by Finite State
Machines with Information Group Zp

Jorge Pedraza Arpasi

Abstract— A trellis code is the image of a signal mapper from
a time invariant group code produced by a Finite State Machine,
FSM. Group codes can be described as dynamical systems and
good group codes must be necessarily well behaved dynamical
systems. For instance good group codes must be controllable and
observable, among other properties of well-behaved systems. In
this paper we work with trellis codes produced by Finite State
Machines over non-abelian groups. The necessity of non-abelian
groups on FSM is because there no exist any regular signal
mapper between the outputs of a classical binary convolutional
encoder and a M−PSK signal set. Also, it has been shown that
the capacity of an AWGN channel using abelian group codes is
upper bounded by the capacity of the same channel using PSK
modulation eventually with different energies per symbol. We will
show that when the trellis section group is non-abelian and the
input group of the FSM is a cyclic group Zp = {0, 1, . . . , p− 1},
p prime, then the trellis code produced by the FSM is non-
controllable.

Index Terms— Trellis codes, dynamical systems, controllability,
p-groups.

I. INTRODUCTION

Trellis Coded Modulation (TCM) is a method, introduced
by Ungerboeck in [1], of reduction of power requirements of a
communication system without increase in the requirements on
bandwidth. The trellis encoder consists of two parts; the first
is called Finite State Machine (FSM) that is also called Wide-
Sense Homomorphic Encoder [2], [3], [4]; the second part is
called signal mapper, [2], and essentially it is a memoryless
application between the trellis section of the FSM and one
constellation of signals. The FSM is a quintuple (U, S, Y, ν, ω)
where U , S, and Y are finite groups, and ν and ω are group
homomorphisms. Moreover, U is the group of inputs or group
of uncoded information, S is the groups of the states, and
Y is the group of outputs or group of encoded information;
ν : U £ S → S is any surjective homomorphism called the
next state mapping, and ω : U £ S → Y is a homomorphism
such that the trellis mapping Ψ : U £S → S×Y ×S defined
by

Ψ(u, s) = (s, ω(u, s), ν(u, s)) (1)

is injective [4], [5], [6]. The group U£S is called the extension
of U by S [7], [8]. The semi-direct product of groups and
direct product of groups are examples of extension of groups.
The systematic and binary convolutional encoder of the Figure
1 is an example of FSM.

We have that it has Z2
2 = {00, 10, 01, 11}

as its uncoded(input) group U , Z3
2 =
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Fig. 1. Binary encoder (Z2
2,Z3

2,Z3
2, ν, ω)

{000, 001, 010, 011, 100, 101, 110, 111} as its sates
group S, and again Z3

2 as its encoded(output) group
Y . The next state homomorphism of this FSM is
ν(u1, u2, s1, s2, s3) = (s3, u2 + s1, u1 + s2) and the encoder
homomorphism is ω(u1, u2, s1, s2, s3) = (u1, u2, s3).
For example, if the initial state is 000 for the sequence
of inputs 00,10,01,11 the encoder responses with the
states sequence 000, 001, 010, 011 and the output
encoded sequence 000, 100, 010, 110. The 32 triplets
{Ψ(u, s) = (s, ω(u, s), ν(u, s))}u∈Z3

2,s∈Z3
2
, form a subgroup

of the direct product of groups S × Y × S = Z3
2 × Z3

2 × Z3
2

and are called transitions. The whole group of 32 transitions
{Ψ(u, s)} is called the trellis section group of the FSM.
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Fig. 2. 8-PSK Constelation

The signal mapping between the outputs of the FSM and
a signal set is an issue that has not solved completely.
But definitions and constraints working about signal mappers
already were given. For example in [6] the matching map was
defined as the following;

Definition 1: A group G with identity e is said to be
matched to a signal set Sg if there is a signal mapping
µ : G → S such that d(µ(g1), µ(g2)) = d(µ(g−1

1 g2), µ(e)),
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for any g1, g2 ∈ G. ¤

If we consider G as the group of outputs of the FSM of the
Figure 1 and the signal set Sg as the 8−PSK constellation of
the Figure 2, we will have that there is not any matching map
µ satisfying the Definition 1. Thus more general definitions
about signal mapper must be given. That is the case of the
next Definition;

Definition 2: A matching map τ between a group G and a
signal set Sg is said to be quasi-regular if the set of squared
distances Dg0 = {d2(τ(g0), τ(g0g))}g∈G is independent of
g ∈ G, for each g0 ∈ G. ¤

Normally the set Dg0 has one or very few elements. The
matching maps satisfying the Definition 1 are called regular
signal mappers and a quasi-regular signal mapper of the
Definition 2 is a generalization of regular signal mappers,
[2]. The regular matchings have obvious advantages over the
quasi-regular matchings such as the resulting codes always will
be geometrically uniform. For the constellation 8 − PSK of
Figure 2 there exist the non-abelian group D8=symmetries of
the square, such that D8 and 8−PSK are regularly matched
accordingly the Definition 1. On the other hand, in [6] it has
been shown that for a given AWGN channel using group codes
over abelian groups, its capacity is upper bounded by some
AWGN channel capacity using PSK constellations Thus, non-
abelian and well-behaved group codes could surmount this
PSK limit. In this work we will focused on the non-abelian
case.

II. FINITE STATE MACHINES AND TIME INVARIANT
GROUP CODES

A. Group extension

Definition 3: An extension of a group U by a group S is
a group G with a normal subgroup N , such that N ∼= U and
G
N
∼= S, [7]. ¤

The extension “U by S” we will denote by the symbol U£S.
When G is an extension U £ S, each element g ∈ G can
be ”factored” as an unique ordered pair (u, s), u ∈ U and
s ∈ S. The semi-direct product U o S is a particular case
of extension, but also it is known that the semi-direct product
is a generalization of the direct product U × S. Canonical
definition of extension of groups is given in [7], [8], specially
in [8] we find a “practical” way to decompose a given group
G, with normal subgroup N , in an extension U £ S. That
decomposition depends on the choice of isomorphisms υ :
N → U , ψ : S → G

N and a lifting l : G
N → G such that

l(N) = e, the neutral element of G. Then, defining φ : S →
Aut(U) by,

φ(s)(u) = υ[l(ψ(s)).υ−1(u).(l(ψ(s)))−1], (2)

and ξ : S × S → U

ξ(s1, s2) = l(ψ(s1, s2))l(ψ(s1))l(ψ(s2)), (3)

the decomposition U £ S with the group operation

(u1, s1) ∗ (u2, s2) = (u1.φ(s1)(u2).ξ(s1, s2) , s1s2) (4)

is isomorphic with G, that is, g = (u, s).
Notice that the resulting pair of (u1, s1).(u2, s2), of the

above operation (4), is (u′, s1s2) for some u′ ∈ U , and s1s2
is the operation on S. This property allow us to do not be
concerned to obtain an explicit result when multiple factors are
acting. For instance, in the proof of some Lemmas it will be
enough to say that (u′, s1s2 . . . sn), is the resulting pair of the
multiple product (u1, s1) ·(u2, s2) ·(u3, s3) . . . (un, sn), where
u′ is some element of U . Analogously, (u, s)n = (u′, sn) for
some u′ ∈ U .

B. Finite State machines FSM

Definition 4: A Finite State Machine (FSM) is a machine
M = (U, Y, S, ω, ν), where the input alphabet U , the output
alphabet Y , and the state set S are groups, and the next state
mapping ν : U £S → S is a surjective group homomorphism
and the encoder-output ω : U £ S → Y is a mapping such
that Ψ defined by (1) is an injective homomorphism. ¤

Suppose that a given FSM (U, Y, S, ν, ω) has its initial state
s0 ∈ S, the neutral element of the group S, then given a finite
sequence {ui}n

i=1 of uncoded elements of U , the FSM will
respond with two sequences of states {si}n

i=1 and of outputs
{yi}n

i=1 in the following way;

ν(u1, s0) = s1 ω(u1, s0) = y1
ν(u2, s1) = s2 ω(u2, s1) = y2
ν(u3, s2) = s2 ω(u3, s2) = y3

...
...

...
...

ν(un, sn−1) = sn ω(un, sn−1) = yn

If we agree that the state s0 is the present state, the state s1
is the next state, the state at time 1, next state from s1 is
s2, the state at time 2, and generally sn is the next state from
sn−1. Then {si}n

i=1 is a sequence of future states. On the other
hand, since the mapping ν of the FSM is surjective, then there
exists at least a pair (u0, s−1) such that s0 = ν(u0, s−1). The
state s−1 is one past state from s0, and we can agree that the
negative index describes well such idea about past. Then, for
the FSM, there exist sequences of past states {si}−1

i=−n, past
outputs {yi}−1

i=−n, and past inputs {ui}0i=−n+1 such that;

ν(u0, s−1) = s0 ω(u0, s−1) = y0
ν(u−1, s−2) = s−1 ω(u−1, s−2) = y−1

ν(u−2, s−3) = s−2 ω(u−2, s−3) = y−2

...
...

...
...

ν(u{−n+1}, s−n) = s{−n+1} ω(u{−n+1}, s−n) = y{−n+1}

Thus for any FSM and for any bi-infinite sequence {uk}k∈Z,
where Z is the integer set, there are two bi-infinite sequences;
{sk}k∈Z of states and {yk}k∈Z of outputs; that are responses
of the FSM to the input sequence {uk}k∈Z. Each sequence
of outputs of the FSM y = {yk}k∈Z is called codeword and
the family of codewords {y ; y is a codeword} is the time
invariant group code C generated by the FSM, [3], [6], [5],
[9]. Considering a group code C as a dynamical system, a
FSM is one realization of C, [5], [6], [10].
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C. Control of time invariant group codes

Given two integers i, j, with i ≤ j, we use the notations
[i, j], [i, j), (i, j], and (i, j) for integer intervals. For instance,
[i, j] = {i, i + 1, . . . , j − 1, j}, [i, j) = {i, i + 1, . . . , j − 1},
and so on. This notation also works for non-finite and discrete
sets such as {k ∈ Z ; k ≤ j} = (−∞, j]. Then, a projection
of a codeword {yk}k∈Z over the set indices [i, j] is denoted
by {y}|[i,j] = {yi,yi+1, . . . ,yj}.

Given two codewords {y1k}k∈Z, {y2k}k∈Z ∈ C, a con-
catenation of {y1k}k∈Z and {y2k}k∈Z in the instant j is
a codeword {(y1 ∧j y2)k}k∈Z defined as (y1 ∧j y2)k ={

y1k|(−∞,j); k < j

y2k|[j,+∞); k ≥ j.
.

If L is an integer greater than one, then a group code
C is said L-controllable when for given words y1 and y2,
there exists a third word y3 and one integer k such that
the concatenation y1 ∧k y3 ∧k+L y2 is a word of the group
code C. [9], [3]. It is said that a natural number l > 1 is
the index of controllability of a group code C when l =
min{L ; C is L−controllable }. Any applicable group code in
telecommunications needs to have an index of controllability.

Definition 5: A group code C is called controllable
when there is an integer l > 1 such that l is the index of
controllability of C. ¤

Considering the mapping Ψ from (1) the group Im(Ψ(U £
U)) is called the trellis section group, and its elements, which
are the triplets (s, ω(u, s), ν(u, s)), have at least three names:
transitions, edges and branches. Since we are working with
trellises as graphical representations of dynamical system we
choose to call such triplets as transitions. Given an initial state
s0 a finite path of transitions of the trellis section is a sequence
B0, B1, . . . Bn−1 such that Bi = (si, ω(ui, si), ν(ui, si)) with
si+1 = ν(si), for some finite sequence of inputs {ui}n−1

i=0 . The
beginning of the path is the state s0 and the end is the state
s{n−1}.

Definition 6: It is said that the states s and r are connected
when there exists a finite path of transitions B0, B1, . . . , Bn

such that s and r are the beginning and the end of the path.
With this definition of state connectedness we can show the
next Theorem.

Theorem 1: If there are two states s and r such that they
are not connected then the time invariant group code produced
by the FSM is non-controllable.

III. TRELLIS CODES

Let τ a quasi-regular signal mapper, originally τ was defined
on the output group Y = {ω(u, s)}(u,s)∈U£S of a FSM.
But recently τ is defined on the whole trellis section group
{Ψ(u, s)}(u,s)∈U£S , [2]. Notice that if ω = id, then Ψ(u, s) =
(s, (u, s), ν(u, s)) is injective. Thus defining τ on the whole
trellis section group instead of the outputs group give us more
possibilities for the construction of trellis codes.

Definition 7: Given a finite Euclidean signal set Sg and a
finite group G = U £ S such that;
• Sg is the image of a quasi-regular signal mapping τ :
G→ Sg

• G = U £ S is isomorphic to the trellis group of a FSM,
we define the trellis code as the set τ(c), were c is a
codeword of a FSM ¤

Clearly the graphical dynamics of the trellis of a trellis code is
the same of the group code. Then a trellis code is controllable
if only if the associated group code is controllable.

Now we will see some properties of the group
{Ψ(u, s)}(u,s)∈U£S .

Definition 8: Two different transitions
(s1, ω(u1, s1), ν(u1, s1)) and (s2, ω(u2, s2), ν(u2, s2))
are parallels if s1 = s2 and ν(u1, s1) = ν(u2, s2) and
ω(u1, s1) 6= ω(u2, s2) ¤

Lemma 1: Consider a FSM (U, S, Y, ν, ω). Let B+ and B−

be subsets of the trellis section group {Ψ(u, s)}(u,s)∈U£S

such that B+ = {(e, ω(u, e), ν(u, e) ; u ∈ U}, the tran-
sitions outcoming from the neutral state {e}, and B− =
{(s, ω(u, s), ν(u, s) ; ν(u, s) = e}, the transitions incoming
into the neutral state {e}. Also, let H+ and H− be subsets
of U £ S such that H+ = U £ {e} = {(u, e) ; u ∈ U} and
H− = Ker(ν) = {(u, s) ; ν(u, s) = e}, then;

1) H+ ∼= B+ and H− ∼= B−,
2) Both H+ and H− are normal subgroups of U £ S,
3) If H+ ∩ H− 6= {(e, e)} then {Ψ(u, s)}(u,s)∈U£S has

parallel transitions,
4) If U£S is non-abelian and the states group S is abelian

then {Ψ(u, s)}(u,s)∈U£S has parallel transitions
Proof.-
1) We have B+ = Ψ(H+) and B+ = Ψ(H+), where Ψ

is defined in (1).
2) Immediate.
3) There exists (u, e) ∈ H+ ∩ H−, with u 6= e such that

ν(u, e) = e. Since Ψ of (1) is injective, ω(u, e) 6=
e. Therefore, the transitions (e, ω(e, e), ν(e, e)) and
(e, ω(u, e), ν(u, e)) are parallels.

4) The states group S being abelian implies that G
H+

∼=
G

H− are abelian factor groups. Then the commutators
subgroup (U £ S)′ is a subgroup of H+ ∩ H−. But
U £ S is non-abelian, then (U £ S)′ 6= {(e, e)} .
Therefore from the above item (3), {Ψ(u, s)}(u,s)∈U£S

has parallel transitions.
¤

Given a FSM (U, S, Y, ν, ω) consider the family of state
subsets {Si}, recursively defined by;

S0 = {e}
S1 = {ν(u, s) ; u ∈ U, s ∈ S0}
S2 = {ν(u, s) ; u ∈ U, s ∈ S1}
...

...
...

Si = {ν(u, s) ; u ∈ U, s ∈ Si−1}, i ≥ 0
... =

...

(5)

Theorem 2: Some properties of the family {Si};
1) Each Si is a subgroup of S
2) Si−1 is normal in Si , for all i = 1, 2, . . . .
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3) If Si−1 = Si then Si = Si+1.
4) If the group code is controllable then S = Sk for some

k.
Proof.-
1) Consider r, s ∈ Si, Since ν is surjective, there exist

(u1, s1) and (u2, s2) with s1, s2 ∈ Si−1 and u1, u2 ∈ U
such that r = ν(u1, s1) and s = ν(u2, s2). Hence, sr =
ν(u3, s1s2), u3 ∈ U and thus sr ∈ Si.

2) Clearly S0 / S1. For i > 1, suppose Sj−1 / Sj , for all
j ≤ i. Given s ∈ Si+1 and r ∈ Si, consider s.r.s−1 =
ν(u, s1).ν(v, r1).ν(u, s1)−1, where s1 ∈ Si, r1 ∈ Si−1,
u, v ∈ U . Hence, s.r.s−1 = ν(u1, r1.s1.r

−1
1 ) ∈ Si,

because r1.s1.r−1
1 ∈ Si−1.

3) Given s ∈ Si+1 there are r ∈ Si and u ∈ U such
that ν(u, r) = s. Since Si = Si−1, r ∈ Si−1. Hence
ν(u, r) = s ∈ Si.

4) If not, there are s ∈ Sk and s′ ∈ S such that
s′ 6= ν(un, ν(un−1, ν(un−2, . . . , ν(u2, ν(u1, s)) . . . ))),
for any sequence {ui}n

i=1 of inputs.
¤

IV. TRELLIS CODE PRODUCED BY A FSM (Zp, S, Y, ν, ω)
WITH p PRIME

In spite its apparent simplicity, there is not a general
classification for p-groups. Only the p-groups of order at
most p6 have been completely classified, for p ≥ 3, [11]. And
for p = 2, the complete classification has been done only
for groups with order ≤ 28, [12], [13]. This classification of
2-groups has been implemented in softwares like the GAP,
[13], which includes in its library all the 2-groups of order
256. The cyclic groups Zp = {0, 1, 2, . . . , p − 1}, where the
group operation is given by i + j module p, are the most
simple instances of p-groups. The results that we will show
here, about group codes with information group Zp, are
valid for any p-group, independently of the existence of its
classification.

Definition 9: Given a group G the group of commutators
of G is the subgroup G′ = {aba−1b−1 ; a, b ∈ G}

Lemma 2: Let Zp £S be an extension which is a p-group.
If Zp £ S0 ⊂ (Zp £ S)′, then Zp £ Si ⊂ (Zp £ S)′, and
Si ⊂ S′, for each i ≥ 1.
Proof.- Since ν is a group homomorphism, the image
ν(Zp £ S0) = S1 is in the commutators subgroup S′

of S. If S1 = S0 the Lemma holds trivially, (Figure 3
(a)). If S1 6= S0, by the long commutators theorem from
[14], there are s ∈ (S1 − S0) and a1, a2, . . . , at ∈ S
such that s = a1a2 . . . ata

−1
1 a−1

2 . . . a−1
t . Now consider

u ∈ Zp and {u1, u2, . . . , ut} ⊂ Zp such that (u, s) =
(u1, a1)(u2, a2) . . . (ut, at)(u1, a1)−1(u2, a2)−1 . . . (ut, at)−1.
We have (u, s) ∈ (Zp £ S)′ and (u, s) 6∈ Zp £ S0. Therefore
Zp £ S1 ⊂ (Zp £ S)′ (Figure 3 (b)).
Again, since ν is a group homomorphism, ν(Zp £ S1) = S2

is in the commutators subgroup S′ of S. Then with very
similar arguments we can proof that if S2 6= S1, then
(Zp £ S2) ⊂ (Zp £ S)′ and ν(Zp £ S2) = S3 ⊂ S′.

Continuing in the same way we conclude that (Zp £ S)′ and
Si ⊂ S′, for any i ≥ 1. ¤

Zp £ S1

1

(Zp £ S1) ∩ (Zp £ S)′

1

Zp £ S0

1

(a) If S1 = S0

Zp £ S1

1

(Zp £ S1) ∩ (Zp £ S)′

p

Zp £ S0

p

(b) If S1 6= S0

Fig. 3. The intersection (Zp £S1)∩ (Zp £S)′ when Zp £S0 ⊂ (Zp £S)′

Lemma 3: Let Zp £S be an extension which is a p-group.
Consider the subgroups {Si} defined in equation (5). Then,
for each i, either each Si is abelian or Si ⊂ S′.

Proof.- Since S1 is cyclic and S2 has almost order p2, we
have both S1 and S2 are abelian. Then, let i ≥ 2 be such that
S1, S2, . . . , Si are all abelian with Si+1 non abelian. Then
there are s1, s2 ∈ Si+1 such that s1s2 6= s2s1. Also there
must be u1, u2 ∈ Zp and r1, r2 ∈ Si, with r1r2 = r2r1, such
that s1 = ν(u1, r1) and s2 = ν(u2, r2). Then;
s1s2 6= s2s1,
ν(u1, r1).ν(u2, r2) 6= ν(u2, r2).ν(u1, r1),
ν((u1, r1).(u2, r2).(u1, r1)−1.(u2, r2)−1) 6= e
ν(u′, r1r2r−1

1 r−1
2 ) 6= e, for some u′ ∈ Zp

ν(u′, e) 6= e
From this, u′ 6= e and (u′, e) ∈ (Zp £ S)′ ∩ (Zp £ S0). Since
the order of Zp £S0 is p, we have that Zp £S0 ⊂ (Zp £S)′.
By the Lemma 2, (Zp £ Si) ⊂ (Zp £ S)′ and Si ⊂ S′, for
each i. Therefore either Si is abelian or Si ⊂ S′. ¤
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Suppose now that we have not the information about the
order of Zp £S, that is, we can not use the hypothesis Zp £S
to be a p-group. In this case we need to consider S as a
generic and finite group. By looking back, again, the family
{Si} defined by equation (5) we will show that when U = Zp,
each Si must be a p-group. In that direction we begin by
showing a result about one important normal subgroup of the
states group is the second projection of the kernel of ν

Sd = {s ∈ S ; ν(u, s) = e for someu ∈ Zp} (6)

Notice that this is a normal subgroup of S isomorphic to Zp

and;
Lemma 4: Consider the FSM (Zp, S, Y, ν, ω) and the sub-

group Sd defined in equation (6), then;

1) If there is s 6= e and s ∈ Sd ∩ Si then Sd ⊂ Si, for
i ≥ 0

2) If Sd ⊂ Si then ν(Zp, Sd) ⊂ Si, for i ≥ 0.
Proof.-

1) Since p ∈ Sd ∩ Si, then {s, s2, . . . , sp−1, sp = e} ⊂
Sd ∩ Si.

2) Given r 6= e such that r ∈ Si∩Sd suppose there is some
u ∈ Zp such that ν(u, r) = s 6∈ Si. For the subgroup
S1 = {s0, s1 = ν(u1, e), s2 = ν(u2, e), . . . , sp−1 =
ν(up−1, e)}, we have that sS1 is a coset where each
element is ν(u, r)ν(ui, e) = ν(u′, r), for some u′ ∈ Zp.
Hence sS1 = {ν(Zp, r)} with sS1 ∩ Si = ∅. But,
since r ∈ Sd there is at least one u0 ∈ Zp such that
ν(u0, r) = e in contradiction with sS1 ∩ Si = ∅. ¤

Theorem 3: Consider the FSM (Zp, S, Y, ν, ω), where p is
prime. Then each Si of (5) must be a p-group

Proof: By induction over i. For i = 1 we have [S1 :
S0] = p or [S1 : S0] = 1. Now suppose that there is a natural
number k > 1 such that [Si : Si−1] = p, for all i ≤ k. We
have that the subgroup Sk has pk elements and each of its
elements have order pi, i ≤ k. If p > [Sk+1 : Sk] > 1 then
[Sk+1 : Sk] = m = qr1

1 q
r2
2 . . . qrt

t , where each qi is a prime
and qi < p. Hence, there must be an element s ∈ (Sk+1−Sk)
such that sq1 = e.
Let u ∈ Zp and r ∈ Sk be such that ν(u, r) = s, then
ν(u1, r

q1) = e. Thus rq1 ∈ Sd ∩ Sk.
If r 6= e then rq1 6= e, because q1 < p. By Lemma 4, Sd ⊂ Sk

and ν(u, r) = s ∈ Sk, contradiction.
If r = e then ν(u, r) = s ∈ S1 ⊂ Sk, contradiction.

Theorem 4: Consider the FSM (Zp, S, Y, ν, ω), where Zp£
S is non-abelian and p is a positive prime, then

1) If S is abelian then the code have parallel transitions,
2) If S is non-abelian then the code is non controllable

Proof.-
1) By the Lemma 1
2) If S is not a p-group then by Theorem 3 the resulting

code is non-controllable. If S is a p-group, then Zp £
S is also a p-group, then by Lemma 3 S is abelian,
contradiction.

V. EXAMPLES AND CONCLUSIONS

Controllable trellis section group G = Zp £ S with
|G| ≤ 32 must be such that p ∈ {2, 3}. On the other hand,
by the Theorem 3, |S| = pn, for some n. Hence |G| ∈
{22, 23, 24, 25, 32, 33}. Also, a controllable trellis section G =
Zp£S must have two normal subgroups N1

∼= U and N2
∼= U

such that G
N1

∼= G
N2

∼= S and N1 ∩ N2 = {0}. That is
because H+, H−, from Lemma 1, must have only {(0, 0)}
in its intersection H+∩H−. Thus, for |Z2 £S| = 23 we have
03 abelian groups and 02 non-abelian groups; D8=symmetries
of square and Q8=quaternions. Both D8 and Q8 have only one
normal subgroup of order 2. For |Z2 £ S| = 24 we have 06
abelian groups and 09 non-abelian groups. Each one of these
last do not have two different normal subgroups satisfying
Lemma 1.
In this way combining the Lemma 1 and Theorem 3 we can
verify the statement of our main result Theorem 4 for any
anon-abelian and finite group G = Zp £ S.
In [15] was proposed a non-abelian controllable trellis group
with order 32, but the decomposition G = U £ S is such that
U = Z2

2 and S = D8. With the help of software GAP [13]
we found that there are more two different and controllable
non-abelian groups with order 32 with U = Z4 = {0, 1, 2, 3}
and S = Q8, [16]. That lead us to focus our next research on
decompositions U £ S = Zn

p £ S and Zpn £ S.
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